Elevator: Height and Velocity
Introduce ideas related to rectilinear motion.https://education.ti.com/en/activity/detail/elevator-height-and-velocity
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations_1
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems
Perspective Drawings
In this activity, students will draw figures in one- and two-point perspective, comparing and contrasting the two types of drawings. They then create an isometric drawing and compare it to the other drawings.https://education.ti.com/en/activity/detail/perspective-drawings
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Exploring Cavalieri's Principle
Students will explore Cavalieri's Principle for cross sectional area and volume.https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1
Creating Perpendicular Bisectors
Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Determining Angle Measure
Determine the measure of an angle and if larger angles have longer "sides."https://education.ti.com/en/activity/detail/determining-angle-measure
Dilations
This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.https://education.ti.com/en/activity/detail/dilations
Implicit Differentiation
Students find the derivative of a relation, F(x,y), that is not solved for y.https://education.ti.com/en/activity/detail/implicit-differentiation_4
Discovering the Circumcenter and Centroid of a Triangle
The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle
Points, Lines, and Planes
Explore the relationships between points, lines, and planes.https://education.ti.com/en/activity/detail/points-lines-and-planes
Implicit Differentiation Tangent Line Problem
How to solve Implicit Differentiation Tangent Line Problem in a Ti-Nspire Cas CXhttps://education.ti.com/en/activity/detail/implicit-differentiation-tangent-line-problem
Exploring Diameter and Circumference
Explore the relationship between the diameter and circumference of a circle.https://education.ti.com/en/activity/detail/exploring-diameter-and-circumference
Possible Lengths of Sides of Triangles
The first problem in this activity has students explore the varying length of the third side of a triangle when 2 sides are given. They will discover that the length of the third side must be between the difference and the sum of the other 2 sides. The second problem extends this idea of the le...https://education.ti.com/en/activity/detail/possible-lengths-of-sides-of-triangles
Proof by Counterexample of the SSA and AAA Cases
Students will use the geometry functions of the Nspire to create triangles with SSA and AAA details. Then these counterexamples are used to disprove possible SSA and AAA conjectures.https://education.ti.com/en/activity/detail/proof-by-counterexample-of-the-ssa-and-aaa-cases
Properties of Parallelograms
In this activity, students will discover the properties of a parallelogram. Students will measure various components of a parallelogram to make conjectures about its properties.https://education.ti.com/en/activity/detail/properties-of-parallelograms
Exploring Midsegments of a Triangle
Students will discover the relationships between a midsegment of a triangle and its third side.https://education.ti.com/en/activity/detail/exploring-midsegments-of-a-triangle
Volume
This is an activity that explores the volume formula for a prism, cylinder, cone, and pyramid. It also familiarizes students with the use of the Calculate tool.https://education.ti.com/en/activity/detail/volume
Exploring Parallel Lines and Angles
Students will explore the relationships between pairs of angles formed when two parallel lines are cut by a transversal. They will identify special pairs of angles, measure all the angles formed by two parallel lines cut by a transversal, and then look for patterns among the measures.https://education.ti.com/en/activity/detail/exploring-parallel-lines-and-angles
Corresponding Parts of Similar Triangles
Change the scale factor (r) between similar triangles; identify the corresponding parts and establish relationships between them.https://education.ti.com/en/activity/detail/corresponding-parts-of-similar-triangles
Calculator City
Students help Calculator City determine where to place the statue of Mr. Tex Instruments by finding the circumcenter and incenter of a triangle.https://education.ti.com/en/activity/detail/calculator-city
Chords of a Circle
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/chords-of-a-circle
Circle Geometry: Angles Formed by Intersecting Chords
This activity is intended to teach students about the rule associated with the angles formed by two chords intersecting within the circle and the intercepted arcs.https://education.ti.com/en/activity/detail/circle-geometry-angles-formed-by-intersecting-chords