SD: How Far is Typical?
This lesson involves gaining a basic understanding of what standard deviation is measuring by examining the location of data around the mean.https://education.ti.com/en/activity/detail/sd--how-far-is-typical
Scatterplot Pulse Rates
This lesson involves creating a scatterplot and fitting a line to student pulse rates collected before and after exercise.https://education.ti.com/en/activity/detail/scatterplot-pulse-rates
Sampling
Students learn about each of the four types of random sampling methods and use the randInt command to find each kind of sample from a given population.https://education.ti.com/en/activity/detail/sampling_1
Testing Claims About Proportions
Students find z-scores and critical values to test claims about proportions. To verify the results, they find P-values by either finding the area under the curve with the Integral tool, or by using the 1-Prop z Test command.https://education.ti.com/en/activity/detail/testing-claims-about-proportions_1
Stratified Sampling
This lesson involves determining which of three different sampling methods - a simple random selection design and two stratified selection designs - would be most beneficial in selecting a survey sample within a given context.https://education.ti.com/en/activity/detail/stratified-sampling
Inverse Variation
Students explore multiple representations of the inverse variation function, beginning with a geometric representation (a rectangle with fixed area), and progressing to a table of values, an algebraic expression, and finally a graph.https://education.ti.com/en/activity/detail/inverse-variation
Standard Error and Sampling Means
This lesson involves investigating the relationship between the standard deviation of a population, the area of a set of rectangles, and the standard deviation of the sampling distribution of sample mean areas of the rectangles.https://education.ti.com/en/activity/detail/standard-error-and-sampling-means
Square it Up!
Students investigate the method of least squares by adding the squares to a scatter plot and moving a line to find the minimum sum. Then they compare their line to the built-in linear regression model.https://education.ti.com/en/activity/detail/square-it-up
Finding Extraneous Solutions
Students will solve different types of equations step by step graphically. They will discover that some of the equations have an extraneous solution and they will investigate at which step in solving the equation that these "extra" solutions appear.https://education.ti.com/en/activity/detail/finding-extraneous-solutions
Claims About Two Proportions
Students test claims about two proportions by calculating test statistics, critical values, and P-values, for both one- and two-tailed tests.https://education.ti.com/en/activity/detail/claims-about-two-proportions
Exponent Rules
This activity allows students to work independently to discover rules for working with exponents, such as the Power of a Power rule. Students also investigate the value of a power whose exponent is zero or negative. As an optional extension, students investigate the value of a power whose exponen...https://education.ti.com/en/activity/detail/exponent-rules
Chi-Square Tests
In this activity, students will look at a problem situation that involves categorical data and will determine which is the appropriate chi-square test to use.https://education.ti.com/en/activity/detail/chisquare-tests
Relating Rates - IB
Students are given a situation of water draining out of a cylindrical tank in order to explain the process of solving related rates questions.https://education.ti.com/en/activity/detail/relating-rates_1
Center and Spread
Students will recognize that the mean and standard deviation (SD) and the median and interquartile range (IQR) are two ways to measure center and spread.https://education.ti.com/en/activity/detail/center-and-spread
Mean Value Theorem
Calculate slopes of secant lines, create tangent lines with the same slope, and note observations about the functions and slopes.https://education.ti.com/en/activity/detail/mean-value-theorem_1
Candy Pieces
Students will be introduce to hypothesis testing. Students are given the number of pieces by color in a bag of candy. They are asked if they think the bag could have come from a manufacturing process designed to produce equal proportions of each color. They will then use a chi-square test for goo...https://education.ti.com/en/activity/detail/candy-pieces_1
Comparing Prices
Students will compare average U.S. gasoline prices per gallon for two years. Then they will use the mean and standard deviation (SD) and the median and interquartile range (IQR) to measure the center and spread of price data.https://education.ti.com/en/activity/detail/comparing-prices
Maximums, Minimums, and Zeroes
Determine when a function has a maximum or minimum based on the derivative of the function.https://education.ti.com/en/activity/detail/maximums-minimums-and-zeroes
Comparing Two Means
In this activity, students will test hypotheses concerning means of two populations. They calculate the test statistic and the critical values and then graph the critical region and plot the value of the test statistic.https://education.ti.com/en/activity/detail/comparing-two-means_1
MacLaurin Polynomials
Students will use TI-Nspire technology to explore MacLaurin polynomials. They will develop polynomials that approximate very special functions.https://education.ti.com/en/activity/detail/maclaurin-polynomials_1
Confidence Levels for Proportions
This activity involves generating a confidence interval for a population proportion from a random sample of size 100 and considering how certain one can be that this interval contains the actual population proportion.https://education.ti.com/en/activity/detail/confidence-levels-for-proportions
Confidence Levels for Means
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. Students will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels-for-means
Local Linearity
Visualize the idea of derivative as local slope.https://education.ti.com/en/activity/detail/local-linearity
Confidence Levels
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. They will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels
Confidence Intervals for Means
This activity investigates generating a confidence interval for the mean of a random sample of size 100 from an unknown population.https://education.ti.com/en/activity/detail/confidence-intervals-for-means_1