Similar Figures
Observe what happens to ratios of pairs of side of rectangles and triangles.https://education.ti.com/en/activity/detail/similar-figures
Secant Angle Investigation
This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.https://education.ti.com/en/activity/detail/secant-angle-investigation
Putting limits on Pi
This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.https://education.ti.com/en/activity/detail/putting-limits-on-pi
Triangle Inequality Theorem
Given the measures of any three segments, will you always be able to make a triangle?https://education.ti.com/en/activity/detail/triangle-inequality-theorem
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Triangle Midsegments
Investigate the relationships between a triangle and the similar triangle formed by one of the triangle's midsegments.https://education.ti.com/en/activity/detail/triangle-midsegments
Derivative Function
Transition from thinking of the derivative at a point to thinking of the derivative as a function.https://education.ti.com/en/activity/detail/derivative-function
Transformers
Students explore a special subset of the transformations of a square called the symmetry group.https://education.ti.com/en/activity/detail/transformers
Patterns in Area - Impact of Changes in Length and Width
Students will explore what happens to the area of a rectangle if you double the length and width.https://education.ti.com/en/activity/detail/patterns-in-area--impact-of-changes-in-length-and-width
Perpendicular Bisector
In this activity, students will explore the perpendicular bisector theorem and discover that if a point is on the perpendicular bisector of a segment, then the point is equidistant from the endpoints. This is an introductory activity, where students will need to know how to change between pages, ...https://education.ti.com/en/activity/detail/perpendicular-bisector_1
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
A Tale of Two Lines
Demonstrate a visual justification for l'Hôpital's Rule.https://education.ti.com/en/activity/detail/a-tale-of-two-lines
Transformational Puppet
This activity allows students to practice their skills of reflecting on a line and translating on a vector. The instructions don't ask for creativity but students who finish early can enjoy being creative with this activity.https://education.ti.com/en/activity/detail/transformational-puppet
3D Parametric
In this activity, students will review the concepts of parametric and polar equations. By using the 3D graphing capabilities of the TI-Nspire handheld, students will be able to extend these ideas to the area of solids of revolution, arc length and kinematics.https://education.ti.com/en/activity/detail/3d-parametric
Transformations: Reflections and Rotations
This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations
Transformations: Reflections
Explore what a reflection does to an object.https://education.ti.com/en/activity/detail/transformations-reflections
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations
Elevator: Height and Velocity
Introduce ideas related to rectilinear motion.https://education.ti.com/en/activity/detail/elevator-height-and-velocity
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations_1
Transformations: Translations
Investigate what a triangle will look like when it is translated horizontally or vertically.https://education.ti.com/en/activity/detail/transformations-translations
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems