Inverse Variation
Students explore multiple representations of the inverse variation function, beginning with a geometric representation (a rectangle with fixed area), and progressing to a table of values, an algebraic expression, and finally a graph.https://education.ti.com/en/activity/detail/inverse-variation
Polar Graphs
Relate polar coordinates to rectangular coordinates and plot polar functions.https://education.ti.com/en/activity/detail/polar-graphs
Maximums, Minimums, and Zeroes
Determine when a function has a maximum or minimum based on the derivative of the function.https://education.ti.com/en/activity/detail/maximums-minimums-and-zeroes
Natural Logarithm
Construct the graph of the natural logarithm function from its definition.https://education.ti.com/en/activity/detail/natural-logarithm
Move Those Chains
In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...https://education.ti.com/en/activity/detail/move-those-chains
How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
MVT for Integrals
Demonstrate how the average value of a function over an interval is related to the definite integral.https://education.ti.com/en/activity/detail/mvt-for-integrals
The Second Fundamental Theorem of Calculus
Students make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus
The Derivatives of Logs
Students will use the Chain Rule to find the derivative of more complex exponential and logarithmic functions.https://education.ti.com/en/activity/detail/the-derivatives-of-logs
The Mean Value Theorem
Students are presented with a several examples of functions to discover the hypotheses and conclusion of the Mean Value theorem. They will explore the concept of continuity and differentiability as related to the Mean Value Theorem.https://education.ti.com/en/activity/detail/the-mean-value-theorem
Exploring Inverse Functions
Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.https://education.ti.com/en/activity/detail/exploring-inverse-functions
Graphical Analysis
Students will analyze graphs of polynomials finding intervals over which the function is increasing or decreasing and positive or negative, as well as the function’s relative minimum and maximum values and x- and y-intercepts.https://education.ti.com/en/activity/detail/graphical-analysis
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Taylor Polynomial Examples
Taylor polynomials associated with five common functions.https://education.ti.com/en/activity/detail/taylor-polynomial-examples
Somewhere in the Middle
In this activity, students will explore the Mean Value Theorem. Students will find out when the tangent line is parallel to the secant line passing through the endpoints of an interval to help them find the values of c guaranteed to exist by the MVT. Students will also test functions where the hy...https://education.ti.com/en/activity/detail/somewhere-in-the-middle_1
Catching the Rays
Students will fit a sinusoidal function to a set of data. The data are the number of hours of daylight starting January 1st and collected on the first and sixteenth days of the months in Thunder Bay, Ontario, Canada.https://education.ti.com/en/activity/detail/catching-the-rays
Multiplicity of Zeros of Functions
Students will utilize graphs and equations of five polynomial functions to determine the zeros of the functions and whether the functions cross the x-axis at these zeros or just touch the x-axis at the zeros. Then students will determine the degree of the polynomial functions and the effect the d...https://education.ti.com/en/activity/detail/multiplicity-of-zeros-of-functions
Multiplication & Division of Functions
Students will determine the resulting functions produced from the multiplication and division of two functions. They will explore the graphical representation of the resulting function and support their algebraic solution by determining if the graphs coincide. Additionally, students will evaluate...https://education.ti.com/en/activity/detail/multiplication--division-of-functions
Modeling Situations Using Piecewise Functions
In this activity, the students use piecewise functions to describe and model everyday situations.https://education.ti.com/en/activity/detail/modeling-situations-using-piecewise-functions
Investigating Sine and Cosine Functions Graphically
Students will use Sliders on the TI-Nspire to change coefficients of the basic sine and cosine function. Students will investigate how the graph changes by looking at different coefficients. Students will also investigate the sine and cosine graphs by comparing intersection points. Download t...https://education.ti.com/en/activity/detail/investigating-sine-and-cosine-functions-graphically
Investigating Logistic Functions and Applications
Students will investigate the graphs of logistic functions, function characteristics, and solving logistic equations in Problem 1. Application problems that are modeled by logistic functions are completed in Problem 2-4. This activity is appropriate for Algebra II or Precalculus.https://education.ti.com/en/activity/detail/investigating-logistic-functions-and-applications
Unit Circle
Students will use the unit circle to find the value of trigonometric functions of various angles. Students will find connections between the unit circle and the trigonometric functions sine and cosine.https://education.ti.com/en/activity/detail/unit-circle_2