Education Technology
< Previous | 8800 - 8825 of 15910 results |  Next >

The Radian Sector

In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.
https://education.ti.com/en/activity/detail/the-radian-sector

Shortest Distance

Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.
https://education.ti.com/en/activity/detail/shortest-distance

The sum of the interior angles of regular polygons

The students will construct triangles within regular-sided polygons to determine the sum of the interior angles. They will then, using statistics, create a linear regression to determine the relationship between the number of sides of a regular polygon and the sum of its interior angles.
https://education.ti.com/en/activity/detail/the-sum-of-the-interior-angles-of-regular-polygons

Side Length, Perimeter, and Area of a Rectangle

Explore the effects of changing base (or height) of a rectangle on it's perimeter and area.
https://education.ti.com/en/activity/detail/side-length-perimeter-and-area-of-a-rectangle

Side-Side-Angle: The Ambiguous Case

Experiment with segment lengths and angle measures.
https://education.ti.com/en/activity/detail/sidesideangle-the-ambiguous-case

Secant Angle Investigation

This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.
https://education.ti.com/en/activity/detail/secant-angle-investigation

Putting limits on Pi

This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.
https://education.ti.com/en/activity/detail/putting-limits-on-pi

Triangle Midsegments

Investigate the relationships between a triangle and the similar triangle formed by one of the triangle's midsegments.
https://education.ti.com/en/activity/detail/triangle-midsegments

Derivative Function

Transition from thinking of the derivative at a point to thinking of the derivative as a function.
https://education.ti.com/en/activity/detail/derivative-function

Definite Integral

Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.
https://education.ti.com/en/activity/detail/definite-integral

The Tale of Two Tangents

This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.
https://education.ti.com/en/activity/detail/the-tale-of-two-tangents

Average Value

Examine areas as integrals and as rectangles for given functions.
https://education.ti.com/en/activity/detail/average-value

A Tale of Two Lines

Demonstrate a visual justification for l'Hôpital's Rule.
https://education.ti.com/en/activity/detail/a-tale-of-two-lines

Transformational Puppet

This activity allows students to practice their skills of reflecting on a line and translating on a vector. The instructions don't ask for creativity but students who finish early can enjoy being creative with this activity.
https://education.ti.com/en/activity/detail/transformational-puppet

Transformations: Reflections and Rotations

This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.
https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations

Transformations: Reflections

Explore what a reflection does to an object.
https://education.ti.com/en/activity/detail/transformations-reflections

Transformations: Rotations

Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.
https://education.ti.com/en/activity/detail/transformations-rotations

Elevator: Height and Velocity

Introduce ideas related to rectilinear motion.
https://education.ti.com/en/activity/detail/elevator-height-and-velocity

Transformations: Rotations

Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.
https://education.ti.com/en/activity/detail/transformations-rotations_1

Transformations: Translations

Investigate what a triangle will look like when it is translated horizontally or vertically.
https://education.ti.com/en/activity/detail/transformations-translations

Area Function Problems

Understand the relationship between the area under a derivative curve and the antiderivative function.
https://education.ti.com/en/activity/detail/area-function-problems

Perspective Drawings

In this activity, students will draw figures in one- and two-point perspective, comparing and contrasting the two types of drawings. They then create an isometric drawing and compare it to the other drawings.
https://education.ti.com/en/activity/detail/perspective-drawings

Dog Run

This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.
https://education.ti.com/en/activity/detail/dog-run

Properties of Parallelograms

Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.
https://education.ti.com/en/activity/detail/properties-of-parallelograms_7

Exploring Cavalieri's Principle

Students will explore Cavalieri's Principle for cross sectional area and volume.
https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1