Calculator City
Students help Calculator City determine where to place the statue of Mr. Tex Instruments by finding the circumcenter and incenter of a triangle.https://education.ti.com/en/activity/detail/calculator-city
Cell Phone Towers
In this activity students explore the locus of a point that is located twice as far from a given point A as it is from given point B. The locus is Apollonius circle. Students discover that the locus is a circle and then prove it. The key property: If a ray bisects an angle of a triangle, then it ...https://education.ti.com/en/activity/detail/cell-phone-towers
Chords of a Circle
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/chords-of-a-circle
Angles of a Triangle
This activity explores the various relationships of the angles of a triangle. It starts with an interior angle and its corresponding exterior angle. Then the sum of the interior angles. Finally, the relationship between one exterior angle and its remote interior angles. The students are prov...https://education.ti.com/en/activity/detail/angles-of-a-triangle_2
Circle Geometry: Angles Formed by Intersecting Chords
This activity is intended to teach students about the rule associated with the angles formed by two chords intersecting within the circle and the intercepted arcs.https://education.ti.com/en/activity/detail/circle-geometry-angles-formed-by-intersecting-chords
Area of a Triangle Between Parallel Lines
This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.https://education.ti.com/en/activity/detail/area-of-a-triangle-between-parallel-lines
Balancing Point
In this activity, students will explore the median and the centroid of a triangle. Students will discover that the medians of a triangle are concurrent. The point of concurrency is the centroid. Students should discover that the center of mass and the centroid are the same for a triangle.https://education.ti.com/en/activity/detail/balancing-point
Limits of Functions
Investigate limits of functions at a point numerically.https://education.ti.com/en/activity/detail/limits-of-functions
Building 3-D Initials with a Vanishing Point
Students will use a vanishing point for a one point perspective drawing of an initial of their choice.https://education.ti.com/en/activity/detail/building-3d-initials-with-a-vanishing-point
Circle Geometry: Property of the Segments of Two Chords Intersecting within a Circle
Students will be able to discover the property of two chords segments intersecting within a circle. They will discover the rule about the segments geometrically, numerically, and graphically. Lesson will touch on line of best fit to explore the relationship between the segments of the two chords.https://education.ti.com/en/activity/detail/circle-geometry-property-of-the-segments-of-two-chords-intersecting-within-a-circle
Filling the Urn
Work with linked representations of the related rates of change of volume and height of fluid.https://education.ti.com/en/activity/detail/filling-the-urn
Extrema
Students will learn how to find and label extrema using first and second derivatives, be able to inspect a graph and determine which extrema the function has, and be able to use Trace, fMin, and fMax to verify the computed answers and find critical values for parametric functions.https://education.ti.com/en/activity/detail/extrema
First Derivative Test
Visualize the connections between the first derivative of a function, critical points, and local extrema.https://education.ti.com/en/activity/detail/first-derivative-test
Angle-Side Relationships
Investigate some necessary conditions for creating a triangle.https://education.ti.com/en/activity/detail/angleside-relationships
Construction of the Lute of Pythagoras to investigate polynomials
The student will construct the Lute of Pythagoras and investigate the many geometric shapes created.https://education.ti.com/en/activity/detail/construction-of-the-lute-of-pythagoras-to-investigate-polynomials
Corresponding Parts of Congruent Triangles
Explore corresponding parts of congruent triangles.https://education.ti.com/en/activity/detail/corresponding-parts-of-congruent-triangles
Congruent Triangles
This activity is intended to provide students with an opportunity to discover three methods of proving triangles congruent: SSS, SAS, and ASA.https://education.ti.com/en/activity/detail/congruent-triangles_2
Exterior Angle Sum Theorem
This activity illustrates the exterior angle sum theorem by taking regular polygons with an exterior angle constructed, one at each vertex, and pulling all the vertices together to show that all exterior angles form a circle.https://education.ti.com/en/activity/detail/exterior-angle-sum-theorem
Exponential Functions and the Natural Logarithm
Discover a surprising property involving the relative growth rate of an exponential function.https://education.ti.com/en/activity/detail/exponential-functions-and-the-natural-logarithm
Circles - Angles and Arcs
In this activity, students will investigate inscribed angles, central angles and intercepted arcs relationships in circles.https://education.ti.com/en/activity/detail/circles--angles-and-arcs
Applications of Similar Figures
Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.https://education.ti.com/en/activity/detail/applications-of-similar-figures
Angles in Polygons
In this activity, students measure interior angles in convex polygons and find the sum of the angle measures. They make and test a conjecture about the sum of the angle measures in an n-sided polygon. Finally, they measure exterior angles in convex polygons, find their sum, and write a proof for ...https://education.ti.com/en/activity/detail/angles-in-polygons_1
Arc Length and Sectors
Investigate the mathematics of arc length and sectors.https://education.ti.com/en/activity/detail/arc-length-and-sectors
Congruent or Not?
In this activity, students will investigate whether AAA, SAS, ASA, or SSA relationship guarantee that two triangles are congruent or not. This is an exploratory activity where students will need to know how to change between pages, grab and move points, and measure lengths.https://education.ti.com/en/activity/detail/congruent-or-not_1
Arcs and Central Angles of Circles
Students discover the central angles of circles plus minor and major arcs.https://education.ti.com/en/activity/detail/arcs-and-central-angles-of-circles