Similar Figures - Using Ratios to Discover Properties
Students will explore similar triangles and set up ratios to discover properties of similar triangles.https://education.ti.com/en/activity/detail/similar-figures--using-ratios-to-discover-properties
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Properties of Special Quadrilaterals Exploration
Students are given a TI-Nspire file with special quadrilaterals so that they can use the dynamic measurement capabilities of the TI-Nspire to explore which properties always hold true for each quadrilateral.https://education.ti.com/en/activity/detail/properties-of-special-quadrilaterals-exploration
Diameter and Circumference Relationship
A short activity that helps to demonstrate the relationship between diameter and circumference.https://education.ti.com/en/activity/detail/diameter-and-circumference-relationship
Possible Lengths of Sides of Triangles
The first problem in this activity has students explore the varying length of the third side of a triangle when 2 sides are given. They will discover that the length of the third side must be between the difference and the sum of the other 2 sides. The second problem extends this idea of the le...https://education.ti.com/en/activity/detail/possible-lengths-of-sides-of-triangles
Exploring Midsegments of a Triangle
Students will discover the relationships between a midsegment of a triangle and its third side.https://education.ti.com/en/activity/detail/exploring-midsegments-of-a-triangle
Area of a Triangle Between Parallel Lines
This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.https://education.ti.com/en/activity/detail/area-of-a-triangle-between-parallel-lines
Construction of the Lute of Pythagoras to investigate polynomials
The student will construct the Lute of Pythagoras and investigate the many geometric shapes created.https://education.ti.com/en/activity/detail/construction-of-the-lute-of-pythagoras-to-investigate-polynomials
Congruent Triangles - Conditions that Prove Congruency
Students will investigate what conditions are necessary to prove two triangles are congruent.https://education.ti.com/en/activity/detail/congruent-triangles--conditions-that-prove-congruency
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Triangle: Side Lengths and Angle Measures
The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures
The Flag Problem
Students explore the area of a triangle with the base being one of the legs of a right angled trapezoid, and an opposite vertex being a point on the other leg of the trapezoid.https://education.ti.com/en/activity/detail/the-flag-problem
The Ladder Problem Revisited
In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...https://education.ti.com/en/activity/detail/the-ladder-problem-revisited
The Lunes of Hippocrates
In this activity the students discover a property of this historical figure.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates
The Lunes of Hippocrates
In this activity, students will explore a figure that involves lunes - the area enclosed between arcs of intersecting circles. When lunes are constructed on the sides of a right triangle, an interesting result occurs.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates_1
The Art Project
Students explore the locus of points in the interior of the right angle such that the sum of the distances to the sides of the angle is constant.https://education.ti.com/en/activity/detail/the-art-project
SSA Ambiguity
This activity allows students to investigate the reason for the ambiguity in the SSA case.https://education.ti.com/en/activity/detail/ssa-ambiguity
TI-84 Plus CE Guidebooks
5.8 TI-84 Plus CE TI-84 Plus CE Guidebooks TI-84 Plus CE TI-84 Plus CE websitehttps://education.ti.com/en/guidebook/details/en/3BBF042421644CE2AF713484B03A8B11/ti-84-plus-ce
TI-84 Plus CE Python Guidebooks
5.8 TI-84 Plus CE Python TI-84 Plus CE Python Guidebooks TI-84 Plus CE Python TI-84 Plus CE Python websitehttps://education.ti.com/en/guidebook/details/en/1424CF4F539A4DBB9145E2AA89F0FF54/ti-84-plus-ce-python
Geyser Water Park
This activity deals with the slope-intercept (y=mx+b) formula. It is a good introductory lesson for using the formulas. It also includes setting up a chart and the students have to enter the data into the calculator and graph the results.https://education.ti.com/en/activity/detail/geyser-water-park
Printing Your Own Books - is it more cost effective?
In this activity, students will create functions based on real-life scenarios, fill out a table of values, and critically analyze characteristics of graphs.https://education.ti.com/en/activity/detail/printing-books
Investigating Parallelograms
The purpose of this activity is to use TI-Nspire to explore the properties of parallelograms. A parallelogram is a quadrilateral with both pairs of opposite sides parallel.https://education.ti.com/en/activity/detail/investigating-parallelograms
Investigating Triangles and Congruence
The main purpose for this activity is to explore triangles with pairs of corresponding congruent sides and a congruent nonincluded angle.https://education.ti.com/en/activity/detail/investigating-triangles-and-congruence
Inscribed and Central Angles in a Circle
This activity explores the relationship between inscribed angles subtended by the same minor arc. The second problem explores the relationship between inscribed angles and central angles subtended by the same minor arc.https://education.ti.com/en/activity/detail/inscribed-and-central-angles-in-a-circle