Secant Angle Investigation
This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.https://education.ti.com/en/activity/detail/secant-angle-investigation
Putting limits on Pi
This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.https://education.ti.com/en/activity/detail/putting-limits-on-pi
Transformations With Lists
Students use list operations to perform reflections, rotations, translations and dilations on a figure, and graph the resulting image using a scatter plot.https://education.ti.com/en/activity/detail/transformations-with-lists_1
Perpendicular Bisector
In this activity, students will explore the perpendicular bisector theorem and discover that if a point is on the perpendicular bisector of a segment, then the point is equidistant from the endpoints. This is an introductory activity, where students will need to know how to change between pages, ...https://education.ti.com/en/activity/detail/perpendicular-bisector_1
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
Transformations: Reflections and Rotations
This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations_1
Parallel Lines and Angles
Students will use TI-Nspire technology to investigate the relationships between two corresponding angles and between two alternate interior angles. At the end of this activity, students should be able to discover that if two parallel lines are cut by a transversal the pairs of corresponding angle...https://education.ti.com/en/activity/detail/parallel-lines-and-angles
Parallel Lines and the Transversals that Cross Them!
Students will explore the relationships between angles formed by parallel lines crossed by transversals. While there are other activities that may address similar topics, the questions presented to students in this activity bring a fresh perspective to student discovery.https://education.ti.com/en/activity/detail/parallel-lines-and-the-transversals-that-cross-them
"Picking" Your Way Through Area Problems
Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems
Applications of Critical Points
Students will examine the relationship between critical points and local extrema through real-world examples. Students will zoom in on the critical points to see if the curve becomes linear to determine if the function is differentiable at the critical point. They will then discover that the sign...https://education.ti.com/en/activity/detail/applications-of-critical-points
Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Equations of Circles
This activity will enable the student to discover BOTH equations of a circle. The Nspire activity will show three different interactive circles: the first with only the radius able to be manipulated, the second with only the center and the third with both. While the student works with both the ...https://education.ti.com/en/activity/detail/equations-of-circles
Properties of Quadrilaterals
The students will investigate the properties of a parallelogram, rhombus, rectangle, square, kite, trapezoid, and isosceles trapezoid by using the measurement tools of the TI-Npsire. The students will record their results on the chart. The time for the activity will vary based on the ability of...https://education.ti.com/en/activity/detail/properties-of-quadrilaterals
Discovering the Triangle Inequality Theorem with the TI-Nspire
Students progress through a series of investigations regarding the lengths of the sides of a triangle. This activity, for discovering the Triangle Inequality Theorem, can be used as either a teacher demonstration or as a classroom activity.https://education.ti.com/en/activity/detail/discovering-the-triangle-inequality-theorem-with-the-tinspire
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Discovering the Circumcenter and Centroid of a Triangle
The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle
Points of Concurrency in Triangles
In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles
Polygons & Angles: Looking for Patterns
This activity explores the relationships of various polygons and their angles. This is a discovery lesson and leads students through data and asks them to make conjectures about the angles of a triangle, quadrilateral, and pentagon. This lesson explores interior angles, exterior angles, and as...https://education.ti.com/en/activity/detail/polygons--angles--looking-for-patterns
Limits
Students will investigate finding the value of limits using graphical and numerical methods. Students will also learn that a limit can exist at points where there is a hole or removable discontinuity. The concept of left and right-sided limits will also be explored as well as some situations in w...https://education.ti.com/en/activity/detail/limits
Polygons - Diagonals
Students will investigate the number of diagonals in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the number of diagonals of the polygons. Some prior familiarity with constructing segments and basic functions of the TI-Nsp...https://education.ti.com/en/activity/detail/polygons--diagonals
Exploring the Black Box of Quadrilaterals
The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals