Polar Graphs
Relate polar coordinates to rectangular coordinates and plot polar functions.https://education.ti.com/en/activity/detail/polar-graphs
Standard Error and Sampling Means
This lesson involves investigating the relationship between the standard deviation of a population, the area of a set of rectangles, and the standard deviation of the sampling distribution of sample mean areas of the rectangles.https://education.ti.com/en/activity/detail/standard-error-and-sampling-means
Exponent Rules
This activity allows students to work independently to discover rules for working with exponents, such as the Power of a Power rule. Students also investigate the value of a power whose exponent is zero or negative. As an optional extension, students investigate the value of a power whose exponen...https://education.ti.com/en/activity/detail/exponent-rules
Polar Necessities
Students graphically and algebraically find the slope of the tangent line at a point on a polar graph.https://education.ti.com/en/activity/detail/polar-necessities
Riemann Rectangle Errors
Use three Riemann sums used to estimate the area of a plane region.https://education.ti.com/en/activity/detail/riemann-rectangle-errors
Center and Spread
Students will recognize that the mean and standard deviation (SD) and the median and interquartile range (IQR) are two ways to measure center and spread.https://education.ti.com/en/activity/detail/center-and-spread
Mean Value Theorem
Calculate slopes of secant lines, create tangent lines with the same slope, and note observations about the functions and slopes.https://education.ti.com/en/activity/detail/mean-value-theorem_1
Comparing Two Means
In this activity, students will test hypotheses concerning means of two populations. They calculate the test statistic and the critical values and then graph the critical region and plot the value of the test statistic.https://education.ti.com/en/activity/detail/comparing-two-means_1
MacLaurin Polynomials
Students will use TI-Nspire technology to explore MacLaurin polynomials. They will develop polynomials that approximate very special functions.https://education.ti.com/en/activity/detail/maclaurin-polynomials_1
Confidence Levels for Proportions
This activity involves generating a confidence interval for a population proportion from a random sample of size 100 and considering how certain one can be that this interval contains the actual population proportion.https://education.ti.com/en/activity/detail/confidence-levels-for-proportions
Local Linearity
Visualize the idea of derivative as local slope.https://education.ti.com/en/activity/detail/local-linearity
Confidence Levels
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. They will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels
Confidence Intervals for Means
This activity investigates generating a confidence interval for the mean of a random sample of size 100 from an unknown population.https://education.ti.com/en/activity/detail/confidence-intervals-for-means_1
Confidence Intervals for 2 Sample Proportions
Do senior citizens and college students have different memories about high school? The activity Confidence Intervals: 2-Sample Proportions involves investigating random samples from two populations from a large Midwestern city with respect to the question: "When you were in high school, did you h...https://education.ti.com/en/activity/detail/confidence-intervals-for-2-sample-proportions
Conditional Probability
This lesson involves thinking about probability when additional information is given.https://education.ti.com/en/activity/detail/conditional-probability
Natural Logarithm
Construct the graph of the natural logarithm function from its definition.https://education.ti.com/en/activity/detail/natural-logarithm
NASA - Space Shuttle Guidance, Navigation, and Control Data
In this activity, students will see how the position of the shuttle is deteremined and how the GNC officer ensures that the space shuttle arrives at its pre-determined destination as outlined by mission objectives.https://education.ti.com/en/activity/detail/nasa--space-shuttle-guidance-navigation-and-control-data
NASA - Space Shuttle Ascent
This activity will engage students in a space shuttle launch and introduce them to the different events that take place during the space shuttle's ascent into space.https://education.ti.com/en/activity/detail/nasa--space-shuttle-ascent_1
NASA - Robonaut 2: First Humanoid Robot in Space
NASA uses robots in many ways to help with space exploration. When it’s possible for robots to perform tasks, rather than people, there are some obvious advantages. Robots do not have to eat, drink, breathe, or sleep. They can perform tasks over and over in exactly the same way without gett...https://education.ti.com/en/activity/detail/nasa--robonaut-2-first-humanoid-robot-in-space
Intersecting the Solutions
In this teacher-led activity, students will learn to solve systems of equations graphically. They will learn the relationship between the algebraic and graphical solutions and create equations that draw upon this connection.https://education.ti.com/en/activity/detail/intersecting-the-solutions
MVT for Integrals
Demonstrate how the average value of a function over an interval is related to the definite integral.https://education.ti.com/en/activity/detail/mvt-for-integrals
The Second Fundamental Theorem of Calculus
Students make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus