Turtle Module | TI-84 Plus CE Python | Texas Instruments
... Move your way to a visually rich and engaging experience in coding, mathematics and computational thinking. The Turtle module brings coding to life for students at all skill levels, especially beginners. Available as a Python mod...https://education.ti.com/en/product-resources/turtle-module/ti84ce-python
battery-care
...actors: environment, storage, the number of charge/discharge cycles, and level of discharge/charge. To extend battery lifespan and battery life, we recommend following these simple guidelines: Avoid heat and humidity: Batteries are designed to operate optimally at room temperat...https://education.ti.com/en/customer-support/battery-care
Secrets in the Triangle
Students will use the geometry screens of the TI-Nspire™ to find points of concurrency by constructing the altitudes, perpendicular bisectors, and medians in triangles. The Euler Line will be found and extensions given.https://education.ti.com/en/activity/detail/secrets-in-the-triangle
Shortest Distances
Students will explore three situations involving distances between points and lines. First, the minimum distance between two points leads to the Triangle Inequality Theorem. Then, the shortest distance from a point to a line is investigated. Finally, students find the smallest total distan...https://education.ti.com/en/activity/detail/shortest-distances
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Triangle Midsegment Exploration
The activity has the students investigate the relationship of the midsegment to the third side of the triangle. In addition the students investigate the area of the smaller triangles compared to the larger one and uses the results to solve the "campground" problem. There is a set of follow-up q...https://education.ti.com/en/activity/detail/triangle-midsegment-exploration
Applications of Critical Points
Students will examine the relationship between critical points and local extrema through real-world examples. Students will zoom in on the critical points to see if the curve becomes linear to determine if the function is differentiable at the critical point. They will then discover that the sign...https://education.ti.com/en/activity/detail/applications-of-critical-points
Equations of Circles
This activity will enable the student to discover BOTH equations of a circle. The Nspire activity will show three different interactive circles: the first with only the radius able to be manipulated, the second with only the center and the third with both. While the student works with both the ...https://education.ti.com/en/activity/detail/equations-of-circles
Properties of Special Quadrilaterals Exploration
Students are given a TI-Nspire file with special quadrilaterals so that they can use the dynamic measurement capabilities of the TI-Nspire to explore which properties always hold true for each quadrilateral.https://education.ti.com/en/activity/detail/properties-of-special-quadrilaterals-exploration
Properties of Triangles
In this activity, students explore different types of triangles and find the interior and exterior angle sum to form a paragraph proof.https://education.ti.com/en/activity/detail/properties-of-triangles
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Possible Lengths of Sides of Triangles
The first problem in this activity has students explore the varying length of the third side of a triangle when 2 sides are given. They will discover that the length of the third side must be between the difference and the sum of the other 2 sides. The second problem extends this idea of the le...https://education.ti.com/en/activity/detail/possible-lengths-of-sides-of-triangles
Properties of Parallelograms
In this activity, students will discover the properties of a parallelogram. Students will measure various components of a parallelogram to make conjectures about its properties.https://education.ti.com/en/activity/detail/properties-of-parallelograms
Can I Make a Triangle?
This TI-Nspire activity is for the Triangle Inequality Theorem. There are 3 problems that contain 3 segments each. The student tries to make triangles with these segments. They compare the lengths of the shortest to the length of the longest to see if the inequality is true or false. For the...https://education.ti.com/en/activity/detail/can-i-make-a-triangle
Are all Constructions Created Equal?
This activity is designed to give preservice teachers an introduction to the circle, compass and line tools in the Graphs & Geometry application of the TI-NSpire. The set of four investigations are designed to provide them with ideas on how to assess geometric constructions by identifying the dif...https://education.ti.com/en/activity/detail/are-all-constructions-created-equal
Logic
This document reviews logical reasoning with problems on compound statements, conditional statements, and algebraic proofs.https://education.ti.com/en/activity/detail/logic
Angle and Perpendicular Bisectors in a Triangle
The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle
Nested Similar Triangles
Discover the conditions that make triangles similar by moving the sides opposite the common angle in nested triangles.https://education.ti.com/en/activity/detail/nested-similar-triangles
The Ladder Problem Revisited
In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...https://education.ti.com/en/activity/detail/the-ladder-problem-revisited
The Lunes of Hippocrates
In this activity the students discover a property of this historical figure.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
The Lunes of Hippocrates
In this activity, students will explore a figure that involves lunes - the area enclosed between arcs of intersecting circles. When lunes are constructed on the sides of a right triangle, an interesting result occurs.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates_1
Secants and Angles in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle