Inverse Variation
Students explore multiple representations of the inverse variation function, beginning with a geometric representation (a rectangle with fixed area), and progressing to a table of values, an algebraic expression, and finally a graph.https://education.ti.com/en/activity/detail/inverse-variation
Polar Graphs
Relate polar coordinates to rectangular coordinates and plot polar functions.https://education.ti.com/en/activity/detail/polar-graphs
Standard Error and Sampling Means
This lesson involves investigating the relationship between the standard deviation of a population, the area of a set of rectangles, and the standard deviation of the sampling distribution of sample mean areas of the rectangles.https://education.ti.com/en/activity/detail/standard-error-and-sampling-means
Claims About Two Proportions
Students test claims about two proportions by calculating test statistics, critical values, and P-values, for both one- and two-tailed tests.https://education.ti.com/en/activity/detail/claims-about-two-proportions
Linear Inequalities
Students first look at tables of values to see that inequalities are true for some values of the variable and not for others. They then graph simple inequalities, comparing the handheld output with graphs they create on paper. The last two problems have students solve one-step linear inequalities...https://education.ti.com/en/activity/detail/linear-inequalities
Relating Rates - IB
Students are given a situation of water draining out of a cylindrical tank in order to explain the process of solving related rates questions.https://education.ti.com/en/activity/detail/relating-rates_1
Center of Mass
Students will identify and interpret the mean geometrically as the location of the coins on the ruler such that the sum of the distances on either side of the mean is the same.https://education.ti.com/en/activity/detail/center-of-mass
Center and Spread
Students will recognize that the mean and standard deviation (SD) and the median and interquartile range (IQR) are two ways to measure center and spread.https://education.ti.com/en/activity/detail/center-and-spread
Mean Value Theorem
Calculate slopes of secant lines, create tangent lines with the same slope, and note observations about the functions and slopes.https://education.ti.com/en/activity/detail/mean-value-theorem_1
Comparing Prices
Students will compare average U.S. gasoline prices per gallon for two years. Then they will use the mean and standard deviation (SD) and the median and interquartile range (IQR) to measure the center and spread of price data.https://education.ti.com/en/activity/detail/comparing-prices
Comparing Two Means
In this activity, students will test hypotheses concerning means of two populations. They calculate the test statistic and the critical values and then graph the critical region and plot the value of the test statistic.https://education.ti.com/en/activity/detail/comparing-two-means_1
Confidence Levels for Proportions
This activity involves generating a confidence interval for a population proportion from a random sample of size 100 and considering how certain one can be that this interval contains the actual population proportion.https://education.ti.com/en/activity/detail/confidence-levels-for-proportions
Confidence Levels for Means
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. Students will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels-for-means
Confidence Levels
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. They will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels
Confidence Intervals for Proportions
This lesson involves the concept of confidence intervals as a tool to make statements about a population proportion based on a given sample.https://education.ti.com/en/activity/detail/confidence-intervals-for-proportions_1
Solving Systems of Linear Equations with Row Reductions to Echelon Form on Augmented Matrices
This activity shows the user how to interpret a system of linear equations as an augmented matrix, row reduce the matrix to echelon form, and interpret the output to give a unique solution, generate infinite solutions, or conclude no solutions exist. The activity also shows how to check unique so...https://education.ti.com/en/activity/detail/solving-systems-of-linear-equations-with-row-reductions-to-echelon-form-on-augmented-matrices
Cancer Clusters
Students will investigate cancer incidence rates in a number of states. Hypothesis testing is introduced and used along with a two-proportion z-test to compare cancer rates. This activity helps students to determine when a difference in data is actually statistically significant. This should enco...https://education.ti.com/en/activity/detail/cancer-clusters
NASA - Space Shuttle Launch
Student examine the ascent stage of a NASA space shuttle.https://education.ti.com/en/activity/detail/nasa--space-shuttle-launch
NASA - Space Shuttle Ascent
This activity will engage students in a space shuttle launch and introduce them to the different events that take place during the space shuttle's ascent into space.https://education.ti.com/en/activity/detail/nasa--space-shuttle-ascent_1
Move Those Chains
In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...https://education.ti.com/en/activity/detail/move-those-chains
Are They Truly Random?
Students will develop lists of random numbers generated by the TI-Nspire handheld. They will explore their set of numbers and engage in a discussion of whether the random number generator is truly generating numbers at random. In addition, students will look at statistical models of their num...https://education.ti.com/en/activity/detail/are-they-truly-random
Half-Life
Students will explore exponential decay through an experiment and use the gathered data to generate an exponential regression equation. Students will then repeat the process with a data set and forecast future results.https://education.ti.com/en/activity/detail/halflife
Are You Confident?
A brief review of the normal distribution in Problem 1 followed by a visual development of confidence intervals in Problem 2 using simulated data.https://education.ti.com/en/activity/detail/are-you-confident
Box Plots Introduction
This lesson involves representing distributions of data using box plots. The emphasis is on helping students understand the relationship between individual data values and the five-number summary. Students will move data within a dot plot and observe the changes within the corresponding box plot...https://education.ti.com/en/activity/detail/box-plots-introduction
The Classic Box Problem - Calculus
The Box_Problem_Calculus.tns document takes a classic problem from calculus and uses the dynamic linking capabilities of TI-Nspire to enact the problem in multiple representations: diagramatic, graphic, numeric, geometric, and symbolic. The problem is posed on the title screen shown at the right.https://education.ti.com/en/activity/detail/the-classic-box-problem--calculus