Education Technology
< Previous | 2200 - 2225 of 8355 results |  Next >

Water, Water

Students solve a real-world problem involving water consumption. They determine if an aquifer can be used as a water source for a new town with a population of 5,000 people.
https://education.ti.com/en/activity/detail/water-water

Number Cube Sums

Students explore experimental probability and patterns in fractions, decimals, and percents by rolling two number cubes and recording and analyzing the sums that come up.
https://education.ti.com/en/activity/detail/number-cube-sums

Tints and Shades

Students solve a problem involving mixing of paint colors. They use color charts to determine the fractional parts and percentages of colors needed to create tints and shades.
https://education.ti.com/en/activity/detail/tints-and-shades

Tiles in a Bag

Students explore probability and patterns in fractions, decimals, and percents by drawing tiles out of a bag.
https://education.ti.com/en/activity/detail/tiles-in-a-bag

Patterns in Percent

Students will use the % key to collect data about percentages of a given number. They will organize the data and look for patterns in percents. (For example, 10% of 20 is twice as much as 5% of 20.)
https://education.ti.com/en/activity/detail/patterns-in-percent

Picturing Percents

Students represent percents on a 10 X 10 grid. They use the grid and the calculator to generate patterns that lead to methods for calculating percentages.
https://education.ti.com/en/activity/detail/picturing-percents

Perimeter Patterns

Students investigate patterns in ordered pairs generated by constructing a sequence of similar shapes. They then use the patterns and the calculator to predict the perimeter of a specific shape in the sequence.
https://education.ti.com/en/activity/detail/perimeter-patterns

Weaving a Story

Students construct a paper weaving using a chart model. They will also learn skip counting with the TI-10 and recognize number patterns in art.
https://education.ti.com/en/activity/detail/weaving-a-story

Number Shorthand

Students will use patterns created on the calculator with the constant operation to develop an understanding of scientific notation.
https://education.ti.com/en/activity/detail/number-shorthand

Spin Me Along

Students explore probability and patterns in fractions, decimals, and percents by spinning three spinners and recording and analyzing the results.
https://education.ti.com/en/activity/detail/spin-me-along

Slow Down - Speed Up

In this activity, students' will use a motion detector to observe the effect of speeding up, slowing down, and moving at a constant rate on a Distance versus Time plot.
https://education.ti.com/en/activity/detail/slow-down--speed-up

Collecting Solar Rays

In this activity, students' will use three Temperature Sensors to collect data from three solar collectors and determine which one absorbs the most heat. They will develop an understanding of the difference between absorption and reflection.
https://education.ti.com/en/activity/detail/collecting-solar-rays

Forensics Case 10 - Dropped at the Scene: Blood spatter analysis

In this activity, students graph data to find quantitative relationships and create a standard reference curve for comparison with unknown data. They analyze blood spatters and examine r2 values for linear, natural logarithm, quadratic, and power curve fit. They find the curve that best fits the ...
https://education.ti.com/en/activity/detail/forensics-case-10brdropped-at-the-scene-blood-spatter-analysis

Celsius and Fahrenheit Number Line

A number line comparing temperatures in Celsius and Fahrenheit.
https://education.ti.com/en/activity/detail/celsius-and-fahrenheit-number-line

Who Started it All?

Students look at the spread of disease and predict the model for that spread. Data is taken at the end of each "sharing" and the exponential model predicted is found to be faulty. The logistic model is then explore. Since we have the list of contacts and the data per contact we can trace it ba...
https://education.ti.com/en/activity/detail/who-started-it-all

Forensics Case 13 - Life in the Fast Lane: Using skid marks to determine vehicle speed

Students determine the coefficient of friction between a vehicle and a road surface. They use the length of the skidding distance to determine the speed of a vehicle before its brakes were applied. Students convert between SI units and Imperial units and rearrange equations to solve for different...
https://education.ti.com/en/activity/detail/forensics-case-13brlife-in-the-fast-lane-using-skid-marks-to-determine-vehicle-speed

Forensics Case 4 - Flipping Coins: Density as a characteristic property

In this activity, students identify counterfeit coins based on the characteristic property of density. They model data using a linear equation, interpret the slope and intercept values from a linear model, and identify a characteristic property of a substance.
https://education.ti.com/en/activity/detail/forensics-case-4brflipping-coins-density-as-a-characteristic-property

Forensics Case 14—Hot Air, Cold Body: Using Newton's Law of Cooling to Determine Time of Death

Students create a temperature versus time graph for cooling and become familiar with Newton's Law of Cooling. They use the cooling-rate equation to estimate time of death of the victim.
https://education.ti.com/en/activity/detail/forensics-case-14hot-air-cold-body-using-newtons-law-of-cooling-to-determine-time-of-death

Graphing Motion: Instantaneous and Average Speed (Follow up activity: Scalar and Vector Quantities)

Students are introduced to the calculator as a graphing tool and distinguish between average speed and instantaneous speed.
https://education.ti.com/en/activity/detail/graphing-motion-instantaneous-and-average-speed-follow-up-activity-scalar-and-vector-quantities

Who Started It All? The Spread Of Disease

Students predict the spread of disease to be exponential. They then do a hands on "sharing of bodily fluids" and see the actual data and compare these results to the projected model. You actually see the number of infected after each sharing to see the shift of the model easier. Written to be c...
https://education.ti.com/en/activity/detail/who-started-it-all--the-spread-of-disease

Blackbody Radiation

This program will produce the blackbody radiation curve for one or two objects when the student inputs the temperature(s) in kelvin. The program will also display on the curve the peak frequency and wavelength when one object is selected.
https://education.ti.com/en/activity/detail/blackbody-radiation

Fastest Animals Number Line

A number line showing the land speed of various animals.
https://education.ti.com/en/activity/detail/fastest-animals-number-line

Centripetal Acceleration

To observe the centripetal acceleration of an object in uniform circular motion. Relate the changes in velocity and radius to the centripetal acceleration.
https://education.ti.com/en/activity/detail/centripetal-acceleration

Circular Motion

In UCM, the net force called Fc is equal to mv2/r and is directed toward the center. This is demonstrated by an object that is suspended by a string and is moving in a circular path which makes a conical pendulum. In this experiment, you will measure the tension and the length of the string to ...
https://education.ti.com/en/activity/detail/circular-motion_1

No More Peas, Please!

Students explore the use of nonstandard units of volume and calculators to estimate the number of peas it would take to fill a classroom.
https://education.ti.com/en/activity/detail/no-more-peas-please