Education Technology
< Previous | 1900 - 1925 of 6542 results |  Next >

Exploring Cavalieri's Principle

Students will explore Cavalieri's Principle for cross sectional area and volume.
https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1

Animating 3D Graphs With TI Nspire CAS (CX)

Demonstrates how to animate 3D graphs using your TI Nspire.
https://education.ti.com/en/activity/detail/animating-3d-graphs-with-ti-nspire-cas-cx

Discovering the Triangle Inequality Theorem with the TI-Nspire

Students progress through a series of investigations regarding the lengths of the sides of a triangle. This activity, for discovering the Triangle Inequality Theorem, can be used as either a teacher demonstration or as a classroom activity.
https://education.ti.com/en/activity/detail/discovering-the-triangle-inequality-theorem-with-the-tinspire

Creating Perpendicular Bisectors

Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.
https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors

Cyclic Quadrilaterals

Explore the relationship between chords of a circle and their perpendicular bisectors.
https://education.ti.com/en/activity/detail/cyclic-quadrilaterals

Determining Angle Measure

Determine the measure of an angle and if larger angles have longer "sides."
https://education.ti.com/en/activity/detail/determining-angle-measure

Integration By Parts

Students investigate the product rule of differentiation and integration by parts.
https://education.ti.com/en/activity/detail/integration-by-parts_1

Inflection Points

Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.
https://education.ti.com/en/activity/detail/inflection-points

Dilations

This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.
https://education.ti.com/en/activity/detail/dilations

Points, Lines, and Distance

Investigate the distance between two points, a point and a line, and two lines.
https://education.ti.com/en/activity/detail/points-lines-and-distance

Infestation to Extermination

Students investigate exponential growth and decay through the situation of infestation and extermination.
https://education.ti.com/en/activity/detail/infestation-to-extermination_1

Implicit Differentiation

Students find the derivative of a relation, F(x,y), that is not solved for y.
https://education.ti.com/en/activity/detail/implicit-differentiation_4

Discovering the Circumcenter and Centroid of a Triangle

The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.
https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle

Points, Lines, and Planes

Explore the relationships between points, lines, and planes.
https://education.ti.com/en/activity/detail/points-lines-and-planes

Implicit Differentiation Tangent Line Problem

How to solve Implicit Differentiation Tangent Line Problem in a Ti-Nspire Cas CX
https://education.ti.com/en/activity/detail/implicit-differentiation-tangent-line-problem

Exploring Circle Equations

Students explore the equation of a circle. They will make the connection with the coordinates of the center of the circle and length of the radius to the corresponding parts of the equation. Then, students apply what they have learned to find the equation of the circles in several circular designs.
https://education.ti.com/en/activity/detail/exploring-circle-equations_1

Points of Concurrency in Triangles

In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.
https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles

Exploring Diameter and Circumference

Explore the relationship between the diameter and circumference of a circle.
https://education.ti.com/en/activity/detail/exploring-diameter-and-circumference

Limits

Students will investigate finding the value of limits using graphical and numerical methods. Students will also learn that a limit can exist at points where there is a hole or removable discontinuity. The concept of left and right-sided limits will also be explored as well as some situations in w...
https://education.ti.com/en/activity/detail/limits

Polygons - Diagonals

Students will investigate the number of diagonals in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the number of diagonals of the polygons. Some prior familiarity with constructing segments and basic functions of the TI-Nsp...
https://education.ti.com/en/activity/detail/polygons--diagonals

Positive and Negative Angles and Arcs

Investigate the relationships among the angles of intersection of the two lines and the intercepted arcs using positive and negative angle and arc measures.
https://education.ti.com/en/activity/detail/positive-and-negative-angles-and-arcs

Exploring the Black Box of Quadrilaterals

The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...
https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals

Exploring the Equation of a Circle

Explore right triangles and the Pythagorean Theorem to develop the equation of a circle.
https://education.ti.com/en/activity/detail/exploring-the-equation-of-a-circle

Exploring the Formula for Area of a Triangle: How was it Derived?

This activity is designed to be paperless. The entire lesson is written to be placed in the Nspire. Students will explore how the formula for area of a triangle works and why it works, they will also explore altitudes and medians of triangles.
https://education.ti.com/en/activity/detail/exploring-the-formula-for-area-of-a-triangle-how-was-it-derived

Properties of Isosceles Triangles

In this activity and by using the Nspire handhelds, students will discover the different properties and attributes of Isosceles Triangles. The students will take advantage of the dynamic capabilities of this very unique handheld to explore the different attributes of the Isosceles Triangle.
https://education.ti.com/en/activity/detail/properties-of-isosceles-triangles