Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
A Tale of Two Lines
Demonstrate a visual justification for l'Hôpital's Rule.https://education.ti.com/en/activity/detail/a-tale-of-two-lines
3D Parametric
In this activity, students will review the concepts of parametric and polar equations. By using the 3D graphing capabilities of the TI-Nspire handheld, students will be able to extend these ideas to the area of solids of revolution, arc length and kinematics.https://education.ti.com/en/activity/detail/3d-parametric
Elevator: Height and Velocity
Introduce ideas related to rectilinear motion.https://education.ti.com/en/activity/detail/elevator-height-and-velocity
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems
Parallel Lines and the Transversals that Cross Them!
Students will explore the relationships between angles formed by parallel lines crossed by transversals. While there are other activities that may address similar topics, the questions presented to students in this activity bring a fresh perspective to student discovery.https://education.ti.com/en/activity/detail/parallel-lines-and-the-transversals-that-cross-them
"Picking" Your Way Through Area Problems
Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems
Dog Run
This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.https://education.ti.com/en/activity/detail/dog-run
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Exploring Cavalieri's Principle
Students will explore Cavalieri's Principle for cross sectional area and volume.https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1
Animating 3D Graphs With TI Nspire CAS (CX)
Demonstrates how to animate 3D graphs using your TI Nspire.https://education.ti.com/en/activity/detail/animating-3d-graphs-with-ti-nspire-cas-cx
Discovering the Triangle Inequality Theorem with the TI-Nspire
Students progress through a series of investigations regarding the lengths of the sides of a triangle. This activity, for discovering the Triangle Inequality Theorem, can be used as either a teacher demonstration or as a classroom activity.https://education.ti.com/en/activity/detail/discovering-the-triangle-inequality-theorem-with-the-tinspire
Creating Perpendicular Bisectors
Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors
Determining Angle Measure
Determine the measure of an angle and if larger angles have longer "sides."https://education.ti.com/en/activity/detail/determining-angle-measure
Integration By Parts
Students investigate the product rule of differentiation and integration by parts.https://education.ti.com/en/activity/detail/integration-by-parts_1
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Dilations
This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.https://education.ti.com/en/activity/detail/dilations
Infestation to Extermination
Students investigate exponential growth and decay through the situation of infestation and extermination.https://education.ti.com/en/activity/detail/infestation-to-extermination_1
Implicit Differentiation
Students find the derivative of a relation, F(x,y), that is not solved for y.https://education.ti.com/en/activity/detail/implicit-differentiation_4
Points of Concurrency in Triangles
In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles
Limits
Students will investigate finding the value of limits using graphical and numerical methods. Students will also learn that a limit can exist at points where there is a hole or removable discontinuity. The concept of left and right-sided limits will also be explored as well as some situations in w...https://education.ti.com/en/activity/detail/limits
Polygons - Diagonals
Students will investigate the number of diagonals in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the number of diagonals of the polygons. Some prior familiarity with constructing segments and basic functions of the TI-Nsp...https://education.ti.com/en/activity/detail/polygons--diagonals
Exploring the Black Box of Quadrilaterals
The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals