The Art Project
Students explore the locus of points in the interior of the right angle such that the sum of the distances to the sides of the angle is constant.https://education.ti.com/en/activity/detail/the-art-project
Supplements and Complements
The attached files contain a supplementary angle and complementary angle for students to explore. They are asked which point changes the measure of the angle. They can move various parts of the construction. The files are designed to be used with your current instructional materials.https://education.ti.com/en/activity/detail/supplements-and-complements
Tangents to a Circle
Explore properties of tangent lines and how they differ from secant lines.https://education.ti.com/en/activity/detail/tangents-to-a-circle
Taxicab Geometry
In this activity, students begin a study of taxicab geometry by discovering the taxicab distance formula. They then use the definition of radius to draw a taxicab circle and make comparisons between a circle in Euclidean geometry and a circle in taxicab geometry. Lastly, they construct taxicab pe...https://education.ti.com/en/activity/detail/taxicab-geometry
Square Root Spiral and Function Graphs
In this activity, students will investigate the spiral formed by square roots of consecutive numbers, numerical approximations for square roots, the plot of the square root spiral arm lengths, and the graph of the square root function.https://education.ti.com/en/activity/detail/square-root-spiral-and-function-graphs
Secants, Tangents and Arcs
Explore the angle and arc relationships for two intersecting lines that intersect a circle.https://education.ti.com/en/activity/detail/secants-tangents-and-arcs
Solving for Sides in a Right Triangle
This activity was designed for the Grade 11 College Math course in the Ontario curriculum. Students are expected to solve problems, including those that arise from real-world applications, by determining the measures of the sides and angles of right triangles using the primary trigonometric ratio...https://education.ti.com/en/activity/detail/solving-for-sides-in-a-right-triangle
Special Segments in Triangles
In this activity, students construct medians, altitudes, angle bisectors, and perpendicular bisectors of triangles. They then drag the vertices to see where the intersections of the segments lie in relation to the triangle, and they measure distances to identify relationships. They see that the i...https://education.ti.com/en/activity/detail/special-segments-in-triangles_1
Remote Interior Angles
Students use the handheld activity and questions to explore remote interior angles.https://education.ti.com/en/activity/detail/remote-interior-angles
Rhombi, Kites, and Trapezoids
Students discover properties of the diagonals of rhombi and kites, and the properties of angles in rhombi, kites, and trapezoids.https://education.ti.com/en/activity/detail/rhombi-kites-and-trapezoids_1
Sailing Away
In this activity, students will explore AAA and SSS relationships in triangles to support understanding of the concepts of triangle similarity and congruence.https://education.ti.com/en/activity/detail/sailing-away
How far do you live from school?
Prior to this activity students determine how far they live from school and how long it takes them to get to school. They analyze this data using various types of graphs and draw conclusions regarding the relationship between time and distance. They also look at zip codes and explore factors that...https://education.ti.com/en/activity/detail/how-far-do-you-live-from-school
Supertall Skyscrapers
In this activity, students use their handhelds to measure scale drawings of famous “supertall” skyscrapers. They first check that the Sears Tower is drawn to scale and then use their measurements to calculate that scale. Next, they write and solve proportions to find the heights of other skyscrap...https://education.ti.com/en/activity/detail/supertall-skyscrapers
Linear Equation Investigation
Students are given a real-life situation (cost of a birthday party) they must create an algebraic equation, table of values, and a scatterplot of the table that is created. They are asked to explain patterns that they observed in each type of representation and also check their accuracy when cre...https://education.ti.com/en/activity/detail/linear-equation-investigation
Solving Systems by Graphing
Explore moving a point to illustrate solving systems of linear equations graphically.https://education.ti.com/en/activity/detail/solving-systems-by-graphing
Geyser Water Park
This activity deals with the slope-intercept (y=mx+b) formula. It is a good introductory lesson for using the formulas. It also includes setting up a chart and the students have to enter the data into the calculator and graph the results.https://education.ti.com/en/activity/detail/geyser-water-park
Geometry: Exploring Quadrilaterals
Drag the verices of a quadrilateral and build the different types; focus on the properties of these different figures, and finally put it all together to identify different quadrilaterals from their properties.https://education.ti.com/en/activity/detail/geometry-exploring-quadrilaterals
Glide Reflections
Explore using a translated figure to create a glide reflection.https://education.ti.com/en/activity/detail/glide-reflections
Quadratic Unit Activity #1: Graphing a Parabola
This is the first activity in a series on vertex form of a quadratic for algebra I. This introduces the 'squaring' function.https://education.ti.com/en/activity/detail/quadratic-unit-activity-1-graphing-a-parabola
Quadratic Unit Activity #2: What's the Equation? Quadratic Functions
This is the second activity for the Quadratic Unit. This activity allows students to use sliders to match various quadratic functions in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-2-whats-the-equation-quadratic-functions
Quadratic Unit Activity #3: What's My Quad Equation 2
This is the third activity in the Quadratic Unit. Students are to find the equation for each graph. All equations are in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-3-whats-my-quad-equation-2
Hanging with the Incenter
In this activity, students will explore the angle bisector of the angles of a triangle. Students will discover that the angle bisectors are concurrent. The point of concurrency is the incenter. Students should discover the relationship between the type of triangle and the location of the point of...https://education.ti.com/en/activity/detail/hanging-with-the-incenter
Quadratic Unit Activity #7: Angry Birds
All the files in this unit are steps to the final activity-Angry Birds. Students are to find the values for a, b, and c in the vertex form of a quadratic function.https://education.ti.com/en/activity/detail/quadratic-unit-activity-7-angry-birds
Quadratic Unit Activity #8: Unit Test Part II
This part of the unit exam assesses student's ability to find the equations for quadratic graphs in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-8-unit-test-part-ii
Equivalent or Not Equivalent?
Introduce the idea of equivalent expressions in the context of three critical operations.https://education.ti.com/en/activity/detail/equivalent-or-not-equivalent