The Second Fundamental Theorem of Calculus
Students make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1
Complex Roots: A Graphical Solution
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph.https://education.ti.com/en/activity/detail/complex-roots-a-graphical-solution
Areas In Intervals
Students use several methods to determine the probability of a given normally distributed value being in a given interval. First, they use the Integral tool to find areas under the curve and to the left of given values. Students continue the activity to find probabilities for which the correspond...https://education.ti.com/en/activity/detail/areas-in-intervals
But What Do You Mean?
In this activity, students learn about the concept of mean or average, in addition to learning several ways to find the mean on the TI-Nspire handheld (including using a spreadsheet and the mean command). Students also use these methods to find the mean when given the frequencies of each number i...https://education.ti.com/en/activity/detail/but-what-do-you-mean
Box Plots Introduction
This lesson involves representing distributions of data using box plots. The emphasis is on helping students understand the relationship between individual data values and the five-number summary. Students will move data within a dot plot and observe the changes within the corresponding box plot...https://education.ti.com/en/activity/detail/box-plots-introduction
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus
Exploring Asymptotes
In this activity, students will explore asymptotes and singularities, paying particular attention to the connection between the algebraic and graphical representations.https://education.ti.com/en/activity/detail/exploring-asymptotes
Exploring Complex Roots
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph. Open the file CollegeAlg_ComplexRoots.tns on your TI-Nspire handheld device to work through the activity.https://education.ti.com/en/activity/detail/exploring-complex-roots
Volume by Cross Sections
Students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes.https://education.ti.com/en/activity/detail/volume-by-cross-sections_1
Exponential Growth
The purpose of this exploration is to investigate properties of exponential functions including the relationship between the graphical and algebraic forms of the functions.https://education.ti.com/en/activity/detail/exponential-growth
Difference in Means
This activity involves investigating whether a difference really seems to exist between two sample means.https://education.ti.com/en/activity/detail/difference-in-means
Investigating Correlation
This lesson involves investigating the connection between the scatterplot of bivariate data and the numerical value of the correlation coefficient.https://education.ti.com/en/activity/detail/investigating-correlation
Introduction to the Central Limit Theorem
Students discover the Central Limit Theorem by simulating rolls of two, four, and seven number cubes via the random number generator.https://education.ti.com/en/activity/detail/introduction-to-the-central-limit-theorem_1
The Area Between
Students will find the area between two curves while determining the required amount of concrete needed for a winding pathway and stepping stones.https://education.ti.com/en/activity/detail/the-area-between_1
Graphs of Polynomial Functions
The activity begins by having students compare functions to introduce the concept of end behavior. Then they graph cubics and quartics, noting the respective end behaviors for positive and negative leading coefficients. Finally, they compare quadratics to quartics and cubics to quintics to discov...https://education.ti.com/en/activity/detail/graphs-of-polynomial-functions
How Many? (Precalculus)
Students will be presented a situation in which they must use linear programming to determine the optimum production level to maximize profits.https://education.ti.com/en/activity/detail/how-many-precalculus
Influence and Outliers
In this activity, students will identify outliers that are influential with respect to the least-squares regression line. Students will describe the role of the location of a point relative to the other data in determining whether that point has influence on the least-squares regression line.https://education.ti.com/en/activity/detail/influence-and-outliers
Is it Rare?
Students use the Poisson distribution to determine the probabilities for various numbers of hurricanes hitting the United States in a given year. Students will also explore the graph of the Poisson distribution and how it behaves.https://education.ti.com/en/activity/detail/is-it-rare_1
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
One- and Two-Variable Statistics--Review
In this activity, students will review the concepts that they have learned thus far in statistics. The first part of the activity includes one-variable topics such as graphing quantitative variables, calculating measures of central tendency and spread, and making comparisons. The second part incl...https://education.ti.com/en/activity/detail/one-and-twovariable-statisticsreview_1
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Secant/Tangent Line Connection
Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...https://education.ti.com/en/activity/detail/secanttangent-line-connection
Sign of the Derivative
Make a connection between the sign of the derivative and the increasing or decreasing nature of the graph.https://education.ti.com/en/activity/detail/sign-of-the-derivative
Margin of Error and Sample Size
This activity investigates the margin of error for a confidence interval and the relationship between sample size and the margin of error.https://education.ti.com/en/activity/detail/margin-of-error-and-sample-size