Angle and Perpendicular Bisectors in a Triangle
The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle
Angle Relationships
In this activity, students explore the angle relationships that exist when two lines intersect. They begin by exploring vertical angles and linear pairs, and then expand their study to two lines and a transversal. They will see what relationships hold true when the two lines intersected by a tran...https://education.ti.com/en/activity/detail/angle-relationships
Nested Similar Triangles
Discover the conditions that make triangles similar by moving the sides opposite the common angle in nested triangles.https://education.ti.com/en/activity/detail/nested-similar-triangles
Triangle Sides & Angles
Students will explore side and angle relationships in a triangle. First, students will discover where the longest (and shortest) side is located relative to the largest (and smallest) angle. Then, students will explore the Isosceles Triangle Theorem and its converse. Finally, students will determ...https://education.ti.com/en/activity/detail/triangle-sides--angles
Scale Factor Area Perimeter
Explore the relationship of perimeter and area in similar triangles when the scale factor is changed.https://education.ti.com/en/activity/detail/scale-factor-area-perimeter
The Geometric Mean
In this activity, students will establish that several triangles are similar and then determine that the altitude to the hypotenuse of a right triangle is the geometric mean between the segments into which it divides the hypotenuse.https://education.ti.com/en/activity/detail/the-geometric-mean_1
The Hinge Theorems
Students will explore the inequality relationships that arise when some of the triangle congruence conditions are in place but others are not. The SAS Inequality Theorem and the SSS Inequality Theorem are often referred to as the Hinge Theorem and its converse. These two theorems concern inequali...https://education.ti.com/en/activity/detail/the-hinge-theorems_1
The Ladder Problem Revisited
In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...https://education.ti.com/en/activity/detail/the-ladder-problem-revisited
Pythagorean Relationships
Investigate the triangles that can be formed using one side of three squares to build the triangle.https://education.ti.com/en/activity/detail/pythagorean-relationships
Pythagorean Triples
Explore Pythagorean triples by dragging vertices to find whole number Pythagorean triples.https://education.ti.com/en/activity/detail/pythagorean-triples
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
The Pythagorean Theorem—and More
Students construct a triangle and find all angle and side measures. They practice dragging the vertices to form certain types of triangles, and then they confirm the Pythagorean Theorem for right triangles. Moreover, they discover the types of triangle that occur when c2 a2 + b2 or when c2 > a2 +...https://education.ti.com/en/activity/detail/the-pythagorean-theoremand-more
The Lunes of Hippocrates
In this activity, students will explore a figure that involves lunes - the area enclosed between arcs of intersecting circles. When lunes are constructed on the sides of a right triangle, an interesting result occurs.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates_1
The Art Project
Students explore the locus of points in the interior of the right angle such that the sum of the distances to the sides of the angle is constant.https://education.ti.com/en/activity/detail/the-art-project
Supplements and Complements
The attached files contain a supplementary angle and complementary angle for students to explore. They are asked which point changes the measure of the angle. They can move various parts of the construction. The files are designed to be used with your current instructional materials.https://education.ti.com/en/activity/detail/supplements-and-complements
Taxicab Geometry
In this activity, students begin a study of taxicab geometry by discovering the taxicab distance formula. They then use the definition of radius to draw a taxicab circle and make comparisons between a circle in Euclidean geometry and a circle in taxicab geometry. Lastly, they construct taxicab pe...https://education.ti.com/en/activity/detail/taxicab-geometry
Soap Warehouse: The Shortest Distance Between Stores
In this investigation we are going to determine the best place to build a warehouse so that it can service three stores with the least amount of travel.https://education.ti.com/en/activity/detail/soap-warehouse-the-shortest-distance-between-stores
Secants, Tangents and Arcs
Explore the angle and arc relationships for two intersecting lines that intersect a circle.https://education.ti.com/en/activity/detail/secants-tangents-and-arcs
Solving for Sides in a Right Triangle
This activity was designed for the Grade 11 College Math course in the Ontario curriculum. Students are expected to solve problems, including those that arise from real-world applications, by determining the measures of the sides and angles of right triangles using the primary trigonometric ratio...https://education.ti.com/en/activity/detail/solving-for-sides-in-a-right-triangle
Special Segments in Triangles
In this activity, students construct medians, altitudes, angle bisectors, and perpendicular bisectors of triangles. They then drag the vertices to see where the intersections of the segments lie in relation to the triangle, and they measure distances to identify relationships. They see that the i...https://education.ti.com/en/activity/detail/special-segments-in-triangles_1
Remote Interior Angles
Students use the handheld activity and questions to explore remote interior angles.https://education.ti.com/en/activity/detail/remote-interior-angles
Solution 40479: Change the Email Associated with a Single User Account Based License.
Solution 40479: Change the Email Associated with a Single User Account Based License. Solution 40479: Change the Email Associated with a Single User Account Based License. global Solution 40479: Change the Email Associated with a Single User Account Based License. website ...https://education.ti.com/en/customer-support/knowledge-base/sofware-apps/computer-software-installation-activation/40479
Balancing Equations
This lesson involves understanding what it means for an equation to be balanced in the process of solving linear equations with one variable.https://education.ti.com/en/activity/detail/balancing-equations
How far do you live from school?
Prior to this activity students determine how far they live from school and how long it takes them to get to school. They analyze this data using various types of graphs and draw conclusions regarding the relationship between time and distance. They also look at zip codes and explore factors that...https://education.ti.com/en/activity/detail/how-far-do-you-live-from-school
Supertall Skyscrapers
In this activity, students use their handhelds to measure scale drawings of famous “supertall” skyscrapers. They first check that the Sears Tower is drawn to scale and then use their measurements to calculate that scale. Next, they write and solve proportions to find the heights of other skyscrap...https://education.ti.com/en/activity/detail/supertall-skyscrapers