How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
MVT for Integrals
Demonstrate how the average value of a function over an interval is related to the definite integral.https://education.ti.com/en/activity/detail/mvt-for-integrals
The Second Fundamental Theorem of Calculus
Students make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus
The Derivatives of Logs
Students will use the Chain Rule to find the derivative of more complex exponential and logarithmic functions.https://education.ti.com/en/activity/detail/the-derivatives-of-logs
Volume by Cross Sections
Students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes.https://education.ti.com/en/activity/detail/volume-by-cross-sections_1
Exponential Growth
The purpose of this exploration is to investigate properties of exponential functions including the relationship between the graphical and algebraic forms of the functions.https://education.ti.com/en/activity/detail/exponential-growth
Graphical Analysis
Students will analyze graphs of polynomials finding intervals over which the function is increasing or decreasing and positive or negative, as well as the function’s relative minimum and maximum values and x- and y-intercepts.https://education.ti.com/en/activity/detail/graphical-analysis
Graphs of Polynomial Functions
The activity begins by having students compare functions to introduce the concept of end behavior. Then they graph cubics and quartics, noting the respective end behaviors for positive and negative leading coefficients. Finally, they compare quadratics to quartics and cubics to quintics to discov...https://education.ti.com/en/activity/detail/graphs-of-polynomial-functions
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Secant/Tangent Line Connection
Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...https://education.ti.com/en/activity/detail/secanttangent-line-connection
Solids Of Revolution Between Two Curves
Students will investigate 3D visualizations of volumes created by rotating two functions about the x-or y-axis. They will understand the concept and reason for the volume formula in order to be prepared for generalizations. Students will solve the definite integral by hand using the fundamental t...https://education.ti.com/en/activity/detail/solids-of-revolution-between-two-curves
Taylor Polynomial Examples
Taylor polynomials associated with five common functions.https://education.ti.com/en/activity/detail/taylor-polynomial-examples
Resampling
This lesson involves approximate sampling distributions obtained from simulations based directly on a single sample. The focus of the lesson is on conducting hypothesis tests in situations for which the conditions of more traditional methods are not met.https://education.ti.com/en/activity/detail/resampling
Too Many Choices!
Students investigate the fundamental counting principle, permutations, and combinations.https://education.ti.com/en/activity/detail/too-many-choices_1
Catching the Rays
Students will fit a sinusoidal function to a set of data. The data are the number of hours of daylight starting January 1st and collected on the first and sixteenth days of the months in Thunder Bay, Ontario, Canada.https://education.ti.com/en/activity/detail/catching-the-rays
Cell Phone Range
Students will learn to identify the domain and range of various real-world step functions. They will graphically explore numerical data points and observe step functions. Open and closed points on a graph are investigated and discussed.https://education.ti.com/en/activity/detail/cell-phone-range_1
Can You Make My Graph?
Students are to find the equations of graphs of trigonometric functions (using sine and cosine) and will also identify values for the amplitude, period, phase shift, and vertical shift. This activity is a modified version of the activity "What's the Equation?" originally made by Lauren Jensen.https://education.ti.com/en/activity/detail/can-you-make-my-graph
Multiplicity of Zeros of Functions
Students will utilize graphs and equations of five polynomial functions to determine the zeros of the functions and whether the functions cross the x-axis at these zeros or just touch the x-axis at the zeros. Then students will determine the degree of the polynomial functions and the effect the d...https://education.ti.com/en/activity/detail/multiplicity-of-zeros-of-functions
Multiplication & Division of Functions
Students will determine the resulting functions produced from the multiplication and division of two functions. They will explore the graphical representation of the resulting function and support their algebraic solution by determining if the graphs coincide. Additionally, students will evaluate...https://education.ti.com/en/activity/detail/multiplication--division-of-functions
Modeling Situations Using Piecewise Functions
In this activity, the students use piecewise functions to describe and model everyday situations.https://education.ti.com/en/activity/detail/modeling-situations-using-piecewise-functions
Investigating the Sine Function
In this activity, students will use their Nspire handhelds to discover the different attributes of the graph of the sine function. The students will take advantage of the dynamic capabilities of this very unique handheld to explore the amplitude, period, and phase shift of the sine function grap...https://education.ti.com/en/activity/detail/investigating-the-sine-function
Investigating Sine and Cosine Functions Graphically
Students will use Sliders on the TI-Nspire to change coefficients of the basic sine and cosine function. Students will investigate how the graph changes by looking at different coefficients. Students will also investigate the sine and cosine graphs by comparing intersection points. Download t...https://education.ti.com/en/activity/detail/investigating-sine-and-cosine-functions-graphically