Education Technology
< Previous | 675 - 700 of 3871 results |  Next >

Linear Programming and the Inequalz App

This activity uses the Inequality Graphing Application to take some of the frustration out of linear programming. It allows students to concentrate on the important part of the lesson, so they can learn the basic concepts with greater depth.
https://education.ti.com/en/activity/detail/linear-programming-and-the-inequalz-app

Linear Regression

Each set of 32 reproducible masters teaches appropriate keystroking and ample practice for each topic in mathematics.
https://education.ti.com/en/activity/detail/linear-regression

Given a graph...what is the function?

Understanding how to associate a function of a parabola with its graph. Students will explore varies functions and determine its graph. They will then use what they learned to predicate where a particular graph of a different function will appear on the coordinate plane.
https://education.ti.com/en/activity/detail/given-a-graph---what-is-the-function

You're So Dense - TI-83

Students investigate the relationship between density of an object, its mass and its volume. They use mass and volume measurements to determine the density of pennies. They compare the density of pre-1983 and post-1984 pennies.
https://education.ti.com/en/activity/detail/youre-so-dense--ti83

Generating Recursive Sequences to Explore Linearity

Students will understand patterns, relations, and functions. They will also use mathematical models to represent and understand quantitative relationships.
https://education.ti.com/en/activity/detail/generating-recursive-sequences-to-explore-linearity

What's My Line?

This activity focuses on strengthening student understanding of connections among graphical, tabular, and algebraic representations of simple linear functions. They enter a simple program that allows them to determine the equations for lines, in the form Y = AX + B, based on tabular and graphical...
https://education.ti.com/en/activity/detail/whats-my-line

Where Should They Hold the Fundraising Party?

Students learn how to create a table of values for a simple linear function and use the table to create a graph on squared paper. They use the graphing calculator to display the ordered pairs and find values of corresponding to values of the other variable by scrolling
https://education.ti.com/en/activity/detail/where-should-they-hold-the-fundraising-party

Get Your Numbers in Shape (TI-83/84 Family)

Students produce a sequence, explore patterns and find a linear or quadratic equation for a given pattern. They use inductive reasoning to make conjectures about patterns. Students also find the Y-value of a function if the X-value is provided, and vice versa.
https://education.ti.com/en/activity/detail/get-your-numbers-in-shape-ti8384-family

Proof of Identity

Students use graphs to verify the reciprocal identities. They then use the calculator's manual graph manipulation feature to discover the negative angle, cofunction, and Pythagorean trigonometric identities.
https://education.ti.com/en/activity/detail/proof-of-identity

Where’s the Point?

This activity can be used to introduce students to the Cartesian plane. They should have some familiarity with how points are located in the plane using two coordinates, but the emphasis in this activity is solidifying students' understanding of just how that is done. As configured, the activity ...
https://education.ti.com/en/activity/detail/wheres-the-point

How Many Drivers? Investigate the Slope-Intercept Form of a Line

In this activity, students will be introduced to the slope-intercept form of a linear equation. They will recognize the effects of changes in the slope and y-intercept on the graph of a line. Students will use the Transformation Graphing application to find an approximate linear model of the actu...
https://education.ti.com/en/activity/detail/how-many-drivers-investigate-the-slopeintercept-form-of-a-line

How Many Drivers? Investigating the Slope-Intercept Form of a Line

In this activity, students will be introduced to the slope-intercept form of a linear equation. They will recognize the effects of changes in the slope and y-intercept on the graph of a line. Students will use the Transformation Graphing application to find an approximate linear model of the actu...
https://education.ti.com/en/activity/detail/how-many-drivers-investigating-the-slopeintercept-form-of-a-line

Statistics for Math B

Students will determine the mean, median, mode and standard deviation of collected data. They will make a frequency histogram of the grouped data, both on graph paper, and on the TI 83+.
https://education.ti.com/en/activity/detail/statistics-for-math-b

Successive Differences

Students explore the relationships between the side length and perimeter of a square and the edge length and surface area of a cube by manipulating geometric models. They use the models to generate a dataset, calculate successive differences, and use them to determine which type of function best ...
https://education.ti.com/en/activity/detail/successive-differences

Inequalities, They Are Not Just Linear Anymore!

Students study quadratic relationships and explore the process of graphing quadratic inequalities and systems of quadratic inequalities. They will solve these inequalities algebraically and graph them on a coordinate plane.
https://education.ti.com/en/activity/detail/inequalities-they-are-not-just-linear-anymore

Stretching a Penny

In this activity, students investigate how a spring stretches when different weights pull on it. They relate the stretch of the spring directly to the weight and vice-versa.
https://education.ti.com/en/activity/detail/stretching-a-penny

Quadratic Regression with Transformation Graphing

Students will enter data into lists and graph scatter plots and perform a multiple regression on the plots. They will also make predictions or draw conclusions from the quadratic model.
https://education.ti.com/en/activity/detail/quadratic-regression-with-transformation-graphing

Intersection

In this activity, students will investigate modeling the motion of two people to find where they will meet and at what rate each was walking.
https://education.ti.com/en/activity/detail/intersection

Parabola Construction

Students construct parabolas using the focus and directrix definition. They also explore how the location of the focus with respect to the directrix affects the shape of the parabola.
https://education.ti.com/en/activity/detail/parabola-construction

The Garbage Problem

Students examine data about garbage production and graphically represent data in a scatter plot. From the data students make predictions. They develop an understanding of the environmental impact of trash accumulation and the need for a plan to deal with potential garbage problems.
https://education.ti.com/en/activity/detail/the-garbage-problem

The Shrinking Dollar

Students examine the long term effects of inflation. They compute the increase in cost price due to compounding of inflation rates every year. They recognize that this increase in cost price is exponential.
https://education.ti.com/en/activity/detail/the-shrinking-dollar

Helping Students Understand Line of Best Fit

This activity is based on a lesson out of the Key Curriculum Press textbook "Discovering Algebra with Technology." Students use five number summaries to find specific points on the graph which can be used to find the equation for a line of best fit. Teachers can then use the TI-Navigator System...
https://education.ti.com/en/activity/detail/helping-students-understand-line-of-best-fit

How Far Did You Walk?

In this activity, students will find the distance traveled when the velocity is constant by examining the area under the Velocity-Time graph and applying the formula d = r * t. They will also find the distance traveled for motion when the velocity is not constant by approximating the area under t...
https://education.ti.com/en/activity/detail/how-far-did-you-walk

Taxes & Tips

Students explore the taxes and tips percentages commonly used in stores and restaurants. They will first develop the pattern of converting a percent to a decimal.
https://education.ti.com/en/activity/detail/taxes--tips_1

Old MacDonald's Pigpen

Students solve a standard maximum value problem using the calculator. Students help Old MacDonald build a rectangular pigpen with 40 m fencing that provides maximum area for the pigs. They graph scatter plots, analyze quadratic functions, and find maximum value of a parabola.
https://education.ti.com/en/activity/detail/old-macdonalds-pigpen