Education Technology
< Previous | 450 - 475 of 7229 results |  Next >

Limits of Functions

Investigate limits of functions at a point numerically.
https://education.ti.com/en/activity/detail/limits-of-functions

First Derivative Test

Visualize the connections between the first derivative of a function, critical points, and local extrema.
https://education.ti.com/en/activity/detail/first-derivative-test

Exponential Functions and the Natural Logarithm

Discover a surprising property involving the relative growth rate of an exponential function.
https://education.ti.com/en/activity/detail/exponential-functions-and-the-natural-logarithm

Exploring Vertical Asymptotes

Students will be able to determine the domain of rational functions, use algebraic concepts to determine the vertical asymptotes of a rational function, determine the removable discontinuities of a rational function, and describe the graph of a rational function given the equation.
https://education.ti.com/en/activity/detail/exploring-vertical-asymptotes

Polar Graphs

Relate polar coordinates to rectangular coordinates and plot polar functions.
https://education.ti.com/en/activity/detail/polar-graphs

Mean Value Theorem

Calculate slopes of secant lines, create tangent lines with the same slope, and note observations about the functions and slopes.
https://education.ti.com/en/activity/detail/mean-value-theorem_1

Maximums, Minimums, and Zeroes

Determine when a function has a maximum or minimum based on the derivative of the function.
https://education.ti.com/en/activity/detail/maximums-minimums-and-zeroes

MacLaurin Polynomials

Students will use TI-Nspire technology to explore MacLaurin polynomials. They will develop polynomials that approximate very special functions.
https://education.ti.com/en/activity/detail/maclaurin-polynomials_1

Natural Logarithm

Construct the graph of the natural logarithm function from its definition.
https://education.ti.com/en/activity/detail/natural-logarithm

Move Those Chains

In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...
https://education.ti.com/en/activity/detail/move-those-chains

The Second Fundamental Theorem of Calculus

Students make visual connections between a function and its definite integral.
https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1

The First Fundamental Theorem of Calculus

Make visual connections between a function and its definite integral.
https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1

The First Fundamental Theorem of Calculus

Make visual connections between a function and its definite integral.
https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus

The Derivatives of Logs

Students will use the Chain Rule to find the derivative of more complex exponential and logarithmic functions.
https://education.ti.com/en/activity/detail/the-derivatives-of-logs

Simple Harmonic Motion

With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.
https://education.ti.com/en/activity/detail/simple-harmonic-motion_1

Second Derivative Grapher

Visualize the relationship between the graph of a function and the graph of its second derivative.
https://education.ti.com/en/activity/detail/second-derivative-grapher

Secant/Tangent Line Connection

Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...
https://education.ti.com/en/activity/detail/secanttangent-line-connection

Taylor Polynomial Examples

Taylor polynomials associated with five common functions.
https://education.ti.com/en/activity/detail/taylor-polynomial-examples

Catching the Rays

Students will fit a sinusoidal function to a set of data. The data are the number of hours of daylight starting January 1st and collected on the first and sixteenth days of the months in Thunder Bay, Ontario, Canada.
https://education.ti.com/en/activity/detail/catching-the-rays

Multiplicity of Zeros of Functions

Students will utilize graphs and equations of five polynomial functions to determine the zeros of the functions and whether the functions cross the x-axis at these zeros or just touch the x-axis at the zeros. Then students will determine the degree of the polynomial functions and the effect the d...
https://education.ti.com/en/activity/detail/multiplicity-of-zeros-of-functions

Modeling Situations Using Piecewise Functions

In this activity, the students use piecewise functions to describe and model everyday situations.
https://education.ti.com/en/activity/detail/modeling-situations-using-piecewise-functions

Investigating the Sine Function

In this activity, students will use their Nspire handhelds to discover the different attributes of the graph of the sine function. The students will take advantage of the dynamic capabilities of this very unique handheld to explore the amplitude, period, and phase shift of the sine function grap...
https://education.ti.com/en/activity/detail/investigating-the-sine-function

Inverse Trig Functions

This activity works backwards by giving students the inverse functions and having them discover how they relate to the original functions. By tracing along the inverse function, data is collected and then plotted on a statplot. The variables are then switched on the statplot. The new plot and ...
https://education.ti.com/en/activity/detail/inverse-trig-functions

How to Save Functions and Take Derivatives

Saving Functions and Take Derivatives using Your Ti-Nspire CAS CX
https://education.ti.com/en/activity/detail/how-to-save-functions-and-take-derivatives

Unit Circle

Students will be able to describe the relationship between the unit circle and the sine and cosine functions. They will be also able to describe the shape of the sine and cosine curves after "unwrapping" the unit circle.
https://education.ti.com/en/activity/detail/unit-circle_1