Perspective Drawings
In this activity, students will draw figures in one- and two-point perspective, comparing and contrasting the two types of drawings. They then create an isometric drawing and compare it to the other drawings.https://education.ti.com/en/activity/detail/perspective-drawings
"Picking" Your Way Through Area Problems
Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems
Dog Run
This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.https://education.ti.com/en/activity/detail/dog-run
Applications of Critical Points
Students will examine the relationship between critical points and local extrema through real-world examples. Students will zoom in on the critical points to see if the curve becomes linear to determine if the function is differentiable at the critical point. They will then discover that the sign...https://education.ti.com/en/activity/detail/applications-of-critical-points
Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
AP Calculus Differemtiation
Basichttps://education.ti.com/en/activity/detail/ap-calculus-differemtiation
Exploring Cavalieri's Principle
Students will explore Cavalieri's Principle for cross sectional area and volume.https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1
Creating Perpendicular Bisectors
Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors
Cyclic Quadrilaterals
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Cyclic Quadrilaterals
Students will explore cyclic quadrilaterals and their properties.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals_2
Properties of Triangles
In this activity, students explore different types of triangles and find the interior and exterior angle sum to form a paragraph proof.https://education.ti.com/en/activity/detail/properties-of-triangles
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Determining Angle Measure
Determine the measure of an angle and if larger angles have longer "sides."https://education.ti.com/en/activity/detail/determining-angle-measure
Proportional Segments
The purpose of this activity is to investigate the relationship between segments formed by drawing a line parallel to one side of a triangle or by drwing and angle bisector of one the angles.https://education.ti.com/en/activity/detail/proportional-segments
Integration By Parts
Students investigate the product rule of differentiation and integration by parts.https://education.ti.com/en/activity/detail/integration-by-parts_1
Diameter and Circumference Relationship
A short activity that helps to demonstrate the relationship between diameter and circumference.https://education.ti.com/en/activity/detail/diameter-and-circumference-relationship
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Dilations
This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.https://education.ti.com/en/activity/detail/dilations
Points, Lines, and Distance
Investigate the distance between two points, a point and a line, and two lines.https://education.ti.com/en/activity/detail/points-lines-and-distance
Infestation to Extermination
Students investigate exponential growth and decay through the situation of infestation and extermination.https://education.ti.com/en/activity/detail/infestation-to-extermination_1
Implicit Differentiation
Students find the derivative of a relation, F(x,y), that is not solved for y.https://education.ti.com/en/activity/detail/implicit-differentiation_4
Discovering the Circumcenter and Centroid of a Triangle
The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle
Points, Lines, and Planes
Explore the relationships between points, lines, and planes.https://education.ti.com/en/activity/detail/points-lines-and-planes