Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Equations of Circles
This activity will enable the student to discover BOTH equations of a circle. The Nspire activity will show three different interactive circles: the first with only the radius able to be manipulated, the second with only the center and the third with both. While the student works with both the ...https://education.ti.com/en/activity/detail/equations-of-circles
Properties of Quadrilaterals
The students will investigate the properties of a parallelogram, rhombus, rectangle, square, kite, trapezoid, and isosceles trapezoid by using the measurement tools of the TI-Npsire. The students will record their results on the chart. The time for the activity will vary based on the ability of...https://education.ti.com/en/activity/detail/properties-of-quadrilaterals
Animating 3D Graphs With TI Nspire CAS (CX)
Demonstrates how to animate 3D graphs using your TI Nspire.https://education.ti.com/en/activity/detail/animating-3d-graphs-with-ti-nspire-cas-cx
Creating Perpendicular Bisectors
Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors
Properties of Special Quadrilaterals Exploration
Students are given a TI-Nspire file with special quadrilaterals so that they can use the dynamic measurement capabilities of the TI-Nspire to explore which properties always hold true for each quadrilateral.https://education.ti.com/en/activity/detail/properties-of-special-quadrilaterals-exploration
Cyclic Quadrilaterals
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Cyclic Quadrilaterals
Students will explore cyclic quadrilaterals and their properties.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals_2
Properties of Triangles
In this activity, students explore different types of triangles and find the interior and exterior angle sum to form a paragraph proof.https://education.ti.com/en/activity/detail/properties-of-triangles
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Proportional Segments
The purpose of this activity is to investigate the relationship between segments formed by drawing a line parallel to one side of a triangle or by drwing and angle bisector of one the angles.https://education.ti.com/en/activity/detail/proportional-segments
Integration By Parts
Students investigate the product rule of differentiation and integration by parts.https://education.ti.com/en/activity/detail/integration-by-parts_1
Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Diameter and Circumference Relationship
A short activity that helps to demonstrate the relationship between diameter and circumference.https://education.ti.com/en/activity/detail/diameter-and-circumference-relationship
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Dilations
This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.https://education.ti.com/en/activity/detail/dilations
Points, Lines, and Distance
Investigate the distance between two points, a point and a line, and two lines.https://education.ti.com/en/activity/detail/points-lines-and-distance
Infestation to Extermination
Students investigate exponential growth and decay through the situation of infestation and extermination.https://education.ti.com/en/activity/detail/infestation-to-extermination_1
Implicit Differentiation
Students find the derivative of a relation, F(x,y), that is not solved for y.https://education.ti.com/en/activity/detail/implicit-differentiation_4
Discovering the Circumcenter and Centroid of a Triangle
The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle
Points, Lines, and Planes
Explore the relationships between points, lines, and planes.https://education.ti.com/en/activity/detail/points-lines-and-planes
Implicit Differentiation Tangent Line Problem
How to solve Implicit Differentiation Tangent Line Problem in a Ti-Nspire Cas CXhttps://education.ti.com/en/activity/detail/implicit-differentiation-tangent-line-problem
Exploring Circle Equations
Students explore the equation of a circle. They will make the connection with the coordinates of the center of the circle and length of the radius to the corresponding parts of the equation. Then, students apply what they have learned to find the equation of the circles in several circular designs.https://education.ti.com/en/activity/detail/exploring-circle-equations_1