Intersecting the Solutions
In this teacher-led activity, students will learn to solve systems of equations graphically. They will learn the relationship between the algebraic and graphical solutions and create equations that draw upon this connection.https://education.ti.com/en/activity/detail/intersecting-the-solutions
How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
Half-Life
Students will explore exponential decay through an experiment and use the gathered data to generate an exponential regression equation. Students will then repeat the process with a data set and forecast future results.https://education.ti.com/en/activity/detail/halflife
The Second Fundamental Theorem of Calculus
Students make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-second-fundamental-theorem-of-calculus_1
Complex Roots: A Graphical Solution
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph.https://education.ti.com/en/activity/detail/complex-roots-a-graphical-solution
But What Do You Mean?
In this activity, students learn about the concept of mean or average, in addition to learning several ways to find the mean on the TI-Nspire handheld (including using a spreadsheet and the mean command). Students also use these methods to find the mean when given the frequencies of each number i...https://education.ti.com/en/activity/detail/but-what-do-you-mean
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus_1
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus
The Derivatives of Logs
Students will use the Chain Rule to find the derivative of more complex exponential and logarithmic functions.https://education.ti.com/en/activity/detail/the-derivatives-of-logs
Exploring Asymptotes
In this activity, students will explore asymptotes and singularities, paying particular attention to the connection between the algebraic and graphical representations.https://education.ti.com/en/activity/detail/exploring-asymptotes
Exploring Complex Roots
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph. Open the file CollegeAlg_ComplexRoots.tns on your TI-Nspire handheld device to work through the activity.https://education.ti.com/en/activity/detail/exploring-complex-roots
Exploring Inverse Functions
Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.https://education.ti.com/en/activity/detail/exploring-inverse-functions
Rectangle and Trapezoid Approximations to Definite Integrals
Use visual representation of area estimation methods in order to determine which is most accurate.https://education.ti.com/en/activity/detail/trapezoid-and-midpoint-rules
Difference Between Two Proportions
Students use confidence intervals to estimate the difference of two population proportions. First they find the intervals by calculating the critical value and the margin of error. Then, they use the 2-propZInterval command. Students find confidence intervals for differences in proportions in rea...https://education.ti.com/en/activity/detail/difference-between-two-proportions_1
Exponential Growth
The purpose of this exploration is to investigate properties of exponential functions including the relationship between the graphical and algebraic forms of the functions.https://education.ti.com/en/activity/detail/exponential-growth
Difference in Means
This activity involves investigating whether a difference really seems to exist between two sample means.https://education.ti.com/en/activity/detail/difference-in-means
Velocity, Position, Distance
Work with linked representations of the horizontal motion of an object.https://education.ti.com/en/activity/detail/velocity-position-distance
Investigating Correlation
This lesson involves investigating the connection between the scatterplot of bivariate data and the numerical value of the correlation coefficient.https://education.ti.com/en/activity/detail/investigating-correlation
Interpreting R -squared
This lesson involves predicting values of a particular variable.https://education.ti.com/en/activity/detail/interpreting-r-squared
Graphical Analysis
Students will analyze graphs of polynomials finding intervals over which the function is increasing or decreasing and positive or negative, as well as the function’s relative minimum and maximum values and x- and y-intercepts.https://education.ti.com/en/activity/detail/graphical-analysis
The Area Between
Students will find the area between two curves while determining the required amount of concrete needed for a winding pathway and stepping stones.https://education.ti.com/en/activity/detail/the-area-between_1
Slopes of Secant Lines
Collect data about the slope of a secant line and then predict the value of the slope of the tangent line.https://education.ti.com/en/activity/detail/slopes-of-secant-lines
Influencing Regression
This lesson involves a least-squares regression line fit to a set of nine values.https://education.ti.com/en/activity/detail/influencing-regression