3D Parametric
In this activity, students will review the concepts of parametric and polar equations. By using the 3D graphing capabilities of the TI-Nspire handheld, students will be able to extend these ideas to the area of solids of revolution, arc length and kinematics.https://education.ti.com/en/activity/detail/3d-parametric
Properties of Quadrilaterals
The students will investigate the properties of a parallelogram, rhombus, rectangle, square, kite, trapezoid, and isosceles trapezoid by using the measurement tools of the TI-Npsire. The students will record their results on the chart. The time for the activity will vary based on the ability of...https://education.ti.com/en/activity/detail/properties-of-quadrilaterals
Properties of Special Quadrilaterals Exploration
Students are given a TI-Nspire file with special quadrilaterals so that they can use the dynamic measurement capabilities of the TI-Nspire to explore which properties always hold true for each quadrilateral.https://education.ti.com/en/activity/detail/properties-of-special-quadrilaterals-exploration
Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Exploring Circle Equations
Students explore the equation of a circle. They will make the connection with the coordinates of the center of the circle and length of the radius to the corresponding parts of the equation. Then, students apply what they have learned to find the equation of the circles in several circular designs.https://education.ti.com/en/activity/detail/exploring-circle-equations_1
Exploring the Black Box of Quadrilaterals
The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals
Properties of Isosceles Triangles
In this activity and by using the Nspire handhelds, students will discover the different properties and attributes of Isosceles Triangles. The students will take advantage of the dynamic capabilities of this very unique handheld to explore the different attributes of the Isosceles Triangle.https://education.ti.com/en/activity/detail/properties-of-isosceles-triangles
Classifying Quadrialterals
In this activity, students will classify quadrilaterals graphed on the Cartesian coordinate plane. Students will justify their classifications with segment and angle measurements as well as slope measurements. A review of the hierarchy of quadrilaterals is at the beginning of the document.https://education.ti.com/en/activity/detail/classifying-quadrialterals
A Sprinkler System Activity for the TI-Nspire TouchPad
This lesson involves the student in constructing and then creating their own designs using circles to indicate water spray from sprinklers set to full, half, and quarter circle patterns. The students learn to appreciate the ART of Math in the designs created with the Nspire TouchPad. The students...https://education.ti.com/en/activity/detail/a-sprinkler-system-activity-for-the-tinspire-touchpad
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Mystery Quadrilateral!
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown mystery quadrilateral that looks like a square. By dragging the vertices of the mystery quadrilateral, students conjecture the true name of the quadrilateral. Students support their ...https://education.ti.com/en/activity/detail/mystery-quadrilateral
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
Square Root Spiral and Function Graphs
In this activity, students will investigate the spiral formed by square roots of consecutive numbers, numerical approximations for square roots, the plot of the square root spiral arm lengths, and the graph of the square root function.https://education.ti.com/en/activity/detail/square-root-spiral-and-function-graphs
Exploring Vertical Asymptotes
Students will be able to determine the domain of rational functions, use algebraic concepts to determine the vertical asymptotes of a rational function, determine the removable discontinuities of a rational function, and describe the graph of a rational function given the equation.https://education.ti.com/en/activity/detail/exploring-vertical-asymptotes
Linear Equations, How Can I Tell?
This is a lesson to be used when introducing linear equations. The class is to determine parallel slopes, slope of the line, and slope- intercept form while investigating the graphs.https://education.ti.com/en/activity/detail/linear-equations-how-can-i-tell
Linear Equation Investigation
Students are given a real-life situation (cost of a birthday party) they must create an algebraic equation, table of values, and a scatterplot of the table that is created. They are asked to explain patterns that they observed in each type of representation and also check their accuracy when cre...https://education.ti.com/en/activity/detail/linear-equation-investigation
Solving Systems by Graphing
Explore moving a point to illustrate solving systems of linear equations graphically.https://education.ti.com/en/activity/detail/solving-systems-by-graphing
The Impossible Task
Students are given a manufacturing situation and asked to write and graph inequalities to represent it and find the solutions.https://education.ti.com/en/activity/detail/the-impossible-task_1
Quadratic Unit Activity #3: What's My Quad Equation 2
This is the third activity in the Quadratic Unit. Students are to find the equation for each graph. All equations are in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-3-whats-my-quad-equation-2
Quadratic Unit Activity #5: Scavenger Hunt #1
Students are to use whatever technology they have to take pictures or find images that are quadratic. The images are then put in a .tns file for them to find the equations. You may use my file by deleting the images and inserting your own. If you do not have the capability to do that, I have prov...https://education.ti.com/en/activity/detail/quadratic-unit-activity-5-scavenger-hunt-1
Quadratic Unit Activity #6: Scavenger Hunt #2
Students are to use whatever technology they have to take pictures or find images that are quadratic. The images are then put in a .tns file for them to find the equations. You may use my file by deleting the images and inserting your own. If you do not have the capability to do that, I have prov...https://education.ti.com/en/activity/detail/quadratic-unit-activity-6-scavenger-hunt-2
Quadratic Unit Activity #8: Unit Test Part II
This part of the unit exam assesses student's ability to find the equations for quadratic graphs in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-8-unit-test-part-ii
Exploring Parabolas
Students will explore the parabola by investigating links between its standard equation form and its graph. Students will also discover the axis of symmetry and the vertex of a parabola.https://education.ti.com/en/activity/detail/exploring-parabolas
Factoring Special Cases
Students explore geometric proofs for two factoring rules: a2 + 2ab + b2 = (a + b)2 and x2 – a2 = (x – a)(x + a). Given a set of shapes whose combined areas represent the left-hand expression, they manipulate them to create rectangles whose areas are equal to the right-hand expression.https://education.ti.com/en/activity/detail/factoring-special-cases_1
Applications of Equations
Students will apply equations to a real-world problem about the number of people attending a museum. They will study the parts of an equation that represents the situation. Then, students will use a dynamic model to find the solution to the equation and interpret what the result means in the real...https://education.ti.com/en/activity/detail/applications-of-equations