Convergence of Taylor Series
A Taylor Series for a function becomes the function as the number of terms increases towards infinity.https://education.ti.com/en/activity/detail/convergence-of-taylor-series
Segments and Chords in a Circle
This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segment measures formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/segments-and-chords-in-a-circle
Secant Angle Investigation
This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.https://education.ti.com/en/activity/detail/secant-angle-investigation
Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Triangle Midsegment Exploration
The activity has the students investigate the relationship of the midsegment to the third side of the triangle. In addition the students investigate the area of the smaller triangles compared to the larger one and uses the results to solve the "campground" problem. There is a set of follow-up q...https://education.ti.com/en/activity/detail/triangle-midsegment-exploration
Paths of Rectangles
This exploration for preservice teachers, looks at how the lengths of the sides of rectangles with equal areas are related. The rectangles are constructed so that one vertex is at the origin. The path of the opposite vertex is an example of indirect variation and demonstrates a connection between...https://education.ti.com/en/activity/detail/paths-of-rectangles
Perpendicular Bisector
In this activity, students will explore the perpendicular bisector theorem and discover that if a point is on the perpendicular bisector of a segment, then the point is equidistant from the endpoints. This is an introductory activity, where students will need to know how to change between pages, ...https://education.ti.com/en/activity/detail/perpendicular-bisector_1
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Dog Run
This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.https://education.ti.com/en/activity/detail/dog-run
Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Equations of Circles
This activity will enable the student to discover BOTH equations of a circle. The Nspire activity will show three different interactive circles: the first with only the radius able to be manipulated, the second with only the center and the third with both. While the student works with both the ...https://education.ti.com/en/activity/detail/equations-of-circles
Animating 3D Graphs With TI Nspire CAS (CX)
Demonstrates how to animate 3D graphs using your TI Nspire.https://education.ti.com/en/activity/detail/animating-3d-graphs-with-ti-nspire-cas-cx
Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Dilations
This activity is designed to allow students to create an interactive document that allows them to alter the specifications of a dilation and visually and numerically see its effects.https://education.ti.com/en/activity/detail/dilations
Infestation to Extermination
Students investigate exponential growth and decay through the situation of infestation and extermination.https://education.ti.com/en/activity/detail/infestation-to-extermination_1
Exploring the Formula for Area of a Triangle: How was it Derived?
This activity is designed to be paperless. The entire lesson is written to be placed in the Nspire. Students will explore how the formula for area of a triangle works and why it works, they will also explore altitudes and medians of triangles.https://education.ti.com/en/activity/detail/exploring-the-formula-for-area-of-a-triangle-how-was-it-derived
Exploring Transformations
Investigate translating and reflecting shapes in the coordinate plane and observe how the new image is related to the original shape.https://education.ti.com/en/activity/detail/exploring-transformations
Extrema
Students will learn how to find and label extrema using first and second derivatives, be able to inspect a graph and determine which extrema the function has, and be able to use Trace, fMin, and fMax to verify the computed answers and find critical values for parametric functions.https://education.ti.com/en/activity/detail/extrema
Angle-Side-Side Exploration
Does knowing two sides and a non-included angle of a triangle guarantee it is a unique triangle? This activity will allow students to discover the answer by moving a point on a triangle to determine if another triangle given the same sides and non-included angle is possible.https://education.ti.com/en/activity/detail/anglesideside-exploration
Exterior Angle Sum Theorem
This activity illustrates the exterior angle sum theorem by taking regular polygons with an exterior angle constructed, one at each vertex, and pulling all the vertices together to show that all exterior angles form a circle.https://education.ti.com/en/activity/detail/exterior-angle-sum-theorem
Exponential Functions and the Natural Logarithm
Discover a surprising property involving the relative growth rate of an exponential function.https://education.ti.com/en/activity/detail/exponential-functions-and-the-natural-logarithm
Congruent or Not?
In this activity, students will investigate whether AAA, SAS, ASA, or SSA relationship guarantee that two triangles are congruent or not. This is an exploratory activity where students will need to know how to change between pages, grab and move points, and measure lengths.https://education.ti.com/en/activity/detail/congruent-or-not_1
Midpoints in the Coordinate Plane
Beginning with horizontal or vertical segments, students will show the coordinates of the endpoints and make a conjecture about the coordinates of the midpoint.https://education.ti.com/en/activity/detail/midpoints-in-the-coordinate-plane
A Sprinkler System Activity for the TI-Nspire TouchPad
This lesson involves the student in constructing and then creating their own designs using circles to indicate water spray from sprinklers set to full, half, and quarter circle patterns. The students learn to appreciate the ART of Math in the designs created with the Nspire TouchPad. The students...https://education.ti.com/en/activity/detail/a-sprinkler-system-activity-for-the-tinspire-touchpad