Critical Points and Local Extrema
Visualize the connections between the critical points and local extrema.https://education.ti.com/en/activity/detail/critical-points-and-local-extrema
Convergence of Taylor Series
A Taylor Series for a function becomes the function as the number of terms increases towards infinity.https://education.ti.com/en/activity/detail/convergence-of-taylor-series
Tesselations
In this activity students will explore what causes some regular polygons to tesselate. They will explore sketches of regular polygons, measure the interior angles, and test to see whether the shapes tesselate.https://education.ti.com/en/activity/detail/tesselations
Tessellations
Students will explore tessellations of triangles and quadrilaterals. They will use the transformation tools of symmetry, reflections, rotations, and/or translations.https://education.ti.com/en/activity/detail/tessellations_1
Segment Addition Postulate
The purpose of this handout is to provide students an opportunity to learn the keystrokes involved using the TI-Nspire and to verify the Segment Addition Postulate.https://education.ti.com/en/activity/detail/segment-addition-postulate
Continuity and Differentiability of Functions
Students will manipulate piecewise functions to make them continuous. Once students create a continuous function, they will calculate derivatives to determine if the function is also differentiable.https://education.ti.com/en/activity/detail/continuity-and-differentiability-of-functions
The Radian Sector
In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.https://education.ti.com/en/activity/detail/the-radian-sector
Continuity and Differentiability 2
Explore piecewise graphs and determine conditions for continuity and differentiability.https://education.ti.com/en/activity/detail/continuity-and-differentiability-2
Shortest Distance
Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.https://education.ti.com/en/activity/detail/shortest-distance
Shortest Distances
Students will explore three situations involving distances between points and lines. First, the minimum distance between two points leads to the Triangle Inequality Theorem. Then, the shortest distance from a point to a line is investigated. Finally, students find the smallest total distan...https://education.ti.com/en/activity/detail/shortest-distances
Transformtions and Tessellations
In this activity you will construct a variety of transformations. In Problem #1 you will create a reflection of a pentagon, in Problem #2 a translation of a regular hexagon, in Problem #3 a rotation of a quadrilateral in two ways, in Problem #4 a dilation of a triangle. In each case you will ob...https://education.ti.com/en/activity/detail/transformtions-and-tessellations
Side Length, Perimeter, and Area of a Rectangle
Explore the effects of changing base (or height) of a rectangle on it's perimeter and area.https://education.ti.com/en/activity/detail/side-length-perimeter-and-area-of-a-rectangle
Side-Side-Angle: The Ambiguous Case
Experiment with segment lengths and angle measures.https://education.ti.com/en/activity/detail/sidesideangle-the-ambiguous-case
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Similar Figures
Observe what happens to ratios of pairs of side of rectangles and triangles.https://education.ti.com/en/activity/detail/similar-figures
Secant Angle Investigation
This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.https://education.ti.com/en/activity/detail/secant-angle-investigation
Triangle Inequality Theorem
Given the measures of any three segments, will you always be able to make a triangle?https://education.ti.com/en/activity/detail/triangle-inequality-theorem
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Triangle Midsegments
Investigate the relationships between a triangle and the similar triangle formed by one of the triangle's midsegments.https://education.ti.com/en/activity/detail/triangle-midsegments
Derivative Function
Transition from thinking of the derivative at a point to thinking of the derivative as a function.https://education.ti.com/en/activity/detail/derivative-function
Transformers
Students explore a special subset of the transformations of a square called the symmetry group.https://education.ti.com/en/activity/detail/transformers
Patterns in Area - Impact of Changes in Length and Width
Students will explore what happens to the area of a rectangle if you double the length and width.https://education.ti.com/en/activity/detail/patterns-in-area--impact-of-changes-in-length-and-width
Transformations With Lists
Students use list operations to perform reflections, rotations, translations and dilations on a figure, and graph the resulting image using a scatter plot.https://education.ti.com/en/activity/detail/transformations-with-lists_1