Slope Fields
Use a visual representation of the family of solutions to a differential equation.https://education.ti.com/en/activity/detail/slope-fields
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
Hypothesis Testing: Means
Students test a claim about a mean with a large sample size using the test statistic and the critical value. They also find the area under the curve to find the p value. Then, students will see how the result would change if they used a one-percent significance level or smaller sample size. An op...https://education.ti.com/en/activity/detail/hypothesis-testing-means_1
Sequences
Graphically evaluate the limit of a sequence.https://education.ti.com/en/activity/detail/sequences
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Secant/Tangent Line Connection
Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...https://education.ti.com/en/activity/detail/secanttangent-line-connection
Sign of the Derivative
Make a connection between the sign of the derivative and the increasing or decreasing nature of the graph.https://education.ti.com/en/activity/detail/sign-of-the-derivative
Margin of Error and Sample Size
This activity investigates the margin of error for a confidence interval and the relationship between sample size and the margin of error.https://education.ti.com/en/activity/detail/margin-of-error-and-sample-size
Olympic Gold (Regression Wisdom)
This activity takes a deeper look into the use of linear regressions. It addresses some of the limitations and common mistakes encountered with regressions.https://education.ti.com/en/activity/detail/olympic-gold-regression-wisdom
Looking Normal
This lesson involves examining multiple samples taken from a single approximately normal population.https://education.ti.com/en/activity/detail/looking-normal
Taylor Polynomials with CAS
Powerful tool for discussing graphs of Taylor polynomials.https://education.ti.com/en/activity/detail/taylor-polynomials
Resampling
This lesson involves approximate sampling distributions obtained from simulations based directly on a single sample. The focus of the lesson is on conducting hypothesis tests in situations for which the conditions of more traditional methods are not met.https://education.ti.com/en/activity/detail/resampling
Trend or Noise?
This lesson involves investigating aspects of statistical information reported in the media or other venues, aspects that are often misunderstood by those unfamiliar with sampling.https://education.ti.com/en/activity/detail/trend-or-noise
Transforming Univariate Data
This lesson involves square root, logarithmic, square, and exponentiation transformations of skewed univariate data using a given data set.https://education.ti.com/en/activity/detail/transforming-univariate-data
Transforming Relationships
In this activity, students will assess the strength of a linear relationship using a residual plot. They will also calculate the correlation coefficient and coefficient of determination to assess the data set. Students will then learn to transform one or two variables in the relationship to creat...https://education.ti.com/en/activity/detail/transforming-relationships_1
Tossing Dice
This lesson involves simulating tossing two fair dice, recording the sum of the faces, and creating a dotplot of the sums.https://education.ti.com/en/activity/detail/tossing-dice
Why t?
This lesson involves examining the variability of individual elements and their related standardized test statistics when those elements are drawn randomly from a given normally-distributed population.https://education.ti.com/en/activity/detail/why-t
Tootsie Pops & Hand Span
Students will collect data, find the linear regression model of the data, and address aspects of the data that affect regression.https://education.ti.com/en/activity/detail/tootsie-pops--hand-span
Why np Min?
This lesson involves examining the general shape of binomial distributions for a variety of values of n and p.https://education.ti.com/en/activity/detail/why-np-min
Two-way Tables and Association
This lesson involves analyzing the results of a survey using a two-way frequency table.https://education.ti.com/en/activity/detail/twoway-tables-and-association
What’s My Model?
Students will investigate several different regression models and determine which of the models makes the most sense, based upon a real-world situation (cooling a cup of hot chocolate).https://education.ti.com/en/activity/detail/whats-my-model
Type 2 Error
This activity allows students to experiment with different alpha levels and alternative hypotheses to investigate the relationship among types of error and power.https://education.ti.com/en/activity/detail/type-2-error
Probability Distributions
Students list outcomes for probability experiments such as flipping a coin, rolling number cubes, and observing the sex of each child born in a family. They use these outcomes to record the values of random variables, such as number of tails, sum of the cubes, and number of boys. Students then cr...https://education.ti.com/en/activity/detail/probability-distributions_2
Normal Probability Plot
This lesson involves creating a normal probability plot for several data sets involving height to examine the appearance of such plots when the distribution is approximately normal.https://education.ti.com/en/activity/detail/normal-probability-plot