The Sprinkler and the Lawn
Students will apply the concepts of angle bisector, incenter of a triangle, and percentages to solve a real-world problem involving a circular sprinkler and a triangular-shaped lawn.https://education.ti.com/en/activity/detail/the-sprinkler-and-the-lawn
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Similar Figures
Observe what happens to ratios of pairs of side of rectangles and triangles.https://education.ti.com/en/activity/detail/similar-figures
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Derivative Function
Transition from thinking of the derivative at a point to thinking of the derivative as a function.https://education.ti.com/en/activity/detail/derivative-function
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Exploring Circle Equations
Students explore the equation of a circle. They will make the connection with the coordinates of the center of the circle and length of the radius to the corresponding parts of the equation. Then, students apply what they have learned to find the equation of the circles in several circular designs.https://education.ti.com/en/activity/detail/exploring-circle-equations_1
Inverse Derivative
Visualize the reciprocal relationship between the derivative of a function and the derivative of its inverse.https://education.ti.com/en/activity/detail/inverse-derivative
Limits of Functions
Investigate limits of functions at a point numerically.https://education.ti.com/en/activity/detail/limits-of-functions
First Derivative Test
Visualize the connections between the first derivative of a function, critical points, and local extrema.https://education.ti.com/en/activity/detail/first-derivative-test
Exponential Functions and the Natural Logarithm
Discover a surprising property involving the relative growth rate of an exponential function.https://education.ti.com/en/activity/detail/exponential-functions-and-the-natural-logarithm
Applications of Similar Figures
Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.https://education.ti.com/en/activity/detail/applications-of-similar-figures
Approximating Pi -- Archimedes method
Students will be assigned different regular polygons to construct. They will then construct a circumscribed circle, measure diameter, circumference and perimeter. The measurements will be placed into a spreadsheet and the ratios of circumference/diameter and perimeter/diameter will be calculated.https://education.ti.com/en/activity/detail/approximating-pi--archimedes-method
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Solving for Sides in a Right Triangle
This activity was designed for the Grade 11 College Math course in the Ontario curriculum. Students are expected to solve problems, including those that arise from real-world applications, by determining the measures of the sides and angles of right triangles using the primary trigonometric ratio...https://education.ti.com/en/activity/detail/solving-for-sides-in-a-right-triangle
Exploring Vertical Asymptotes
Students will be able to determine the domain of rational functions, use algebraic concepts to determine the vertical asymptotes of a rational function, determine the removable discontinuities of a rational function, and describe the graph of a rational function given the equation.https://education.ti.com/en/activity/detail/exploring-vertical-asymptotes
Growing Patterns
This lesson involves using pattern growth to construct functions.https://education.ti.com/en/activity/detail/growing-patterns
Quadratic Unit Activity #1: Graphing a Parabola
This is the first activity in a series on vertex form of a quadratic for algebra I. This introduces the 'squaring' function.https://education.ti.com/en/activity/detail/quadratic-unit-activity-1-graphing-a-parabola
Quadratic Unit Activity #7: Angry Birds
All the files in this unit are steps to the final activity-Angry Birds. Students are to find the values for a, b, and c in the vertex form of a quadratic function.https://education.ti.com/en/activity/detail/quadratic-unit-activity-7-angry-birds
Domain and Range of Exponential Functions
Determine the domain and range of an exponential function f(x) = bx.https://education.ti.com/en/activity/detail/domain-and-range-of-exponential-functions
Dog Days or Dog Years?
Students use ordered pairs, table of values, and a scatter plot to determine a function that represents real world data.https://education.ti.com/en/activity/detail/dog-days-or-dog-years