Bending Light
In this activity, students explore the refraction of a single light ray. They begin by exploring light traveling from a less dense medium into a denser medium. They use a numerical approach to establish a relationship between the angle of incidence and the angle of refraction. Then, students expl...https://education.ti.com/en/activity/detail/bending-light
Colligative Properties
Investigate the freezing point depression due to different concentration of solute.https://education.ti.com/en/activity/detail/colligative-properties
Conductivity of Solutions
This is an investigation of conductivity and concentration of ionic solutions. Students create a plot of conductivity and concentration and calculate a mathematical model for this relationship. They will also look at substances that release differing numbers of ions.https://education.ti.com/en/activity/detail/conductivity-of-solutions
Collisions in One Dimension
Students use the law of conservation of momentum to determine the momentums and velocities of objects involved in perfectly inelastic collisions.https://education.ti.com/en/activity/detail/collisions-in-one-dimension
Conservation of Momentum Data Collection Lab
In this lesson, students will explore momentum through collecting data using CBR2s of two carts on a dynamic track that collide.https://education.ti.com/en/activity/detail/conservation-of-momentum-data-collection-lab
A Little Light Work
Students will study graphs of light intensity at various distances from a light sensor. They will use power and linear regressions to determine the relationship between light intensity and distance from the light source. They will also develop their own models for the relationship.https://education.ti.com/en/activity/detail/a-little-light-work
A Magnetic Attraction
In this lesson, students will investigate the relationship between magnetic field strength and distance.https://education.ti.com/en/activity/detail/a-magnetic-attraction
Forensics with TI-Nspire™ - Case File: Dropped at the Scene
This lab introduces students to the science behind blood spatter analysis. It also provides an opportunity for students to explore curve fitting and can extended to use r2 values (optional) to determine the most appropriate curve fit for the data set.https://education.ti.com/en/activity/detail/forensics-with-tinspire-case-10--dropped-at-the-scene
Stream Erosion
In this lesson, students will manipulate the slope of the surface over which the water is flowing to show varying rates of erosion and deposition.https://education.ti.com/en/activity/detail/stream-erosion
Freezing Point
The students will determine the freezing and melting point of water.https://education.ti.com/en/activity/detail/freezing-point
Forensics with TI-Nspire™ - Case File: No Dumping
In this activity, students will investigate the importance of soils and other trace evidence in connecting victims, crime scenes, and suspects.https://education.ti.com/en/activity/detail/forensics-with-ti@nspire-@-case-8-no-dumping
AC Circuits
Students explore a model of alternating electric current. They observe the effects of varying voltage, angular velocity, frequency, and phase shift on the shape of the waveform. They also calculate the relative phase shift between two waveforms. Finally, they create a model of a three-phase alter...https://education.ti.com/en/activity/detail/ac-circuits
Air Resistance
Students collect data on the rate at which coffee filters fall.https://education.ti.com/en/activity/detail/air-resistance
Balancing Torques and Forces
In this activity, students explore the conditions necessary to produce static equilibrium using first-, second-, and third-class levers.https://education.ti.com/en/activity/detail/balancing-torques-and-forces
Forces on an Inclined Plane
In this lesson, students will collect data on the magnitude of the force acting on an object resting on an inclined plane.https://education.ti.com/en/activity/detail/forces-on-an-inclined-plane
Forces on Point Charges
Students explore interactions between charged point particles. They first explore graphical vector addition and then use vector addition rules to explore the net forces on charged particles. The preconstructed templates used in this activity include charged particles and forces of interactions be...https://education.ti.com/en/activity/detail/forces-on-point-charges
Handheld Skills for the Science Classroom
TBDhttps://education.ti.com/en/activity/detail/handheld-skills-for-the-science-classroom
Hit the Target
In this lesson, students will explore the range of a marble that rolls down a ramp and off a table. The goal is for students to develop a mathematical model that will allow them to hit a target placed on the floor on the first try.https://education.ti.com/en/activity/detail/hit-the-target
Impulse of a Force
In this lesson, students will explore the impulse produced by a cart when it hits a stationary wall.https://education.ti.com/en/activity/detail/impulse-of-a-force
Forensics with TI-Nspire™ - Case File: Bouncing Back
In this activity, students will be using the motion sensor as a sonar detector, through air to locate and identify a missing object in a box.https://education.ti.com/en/activity/detail/forensics-with-tinspiresuptmsup--case-2-bouncing-back
Focusing on Light
In this activity, students explore the reflection of light by parabolic and semicircular mirrors. They begin by exploring reflection using a series of flat mirrors that are attached to one another to create a flexible mirror that can simulate a curved mirror. Students then explore reflection by a...https://education.ti.com/en/activity/detail/focusing-on-light
Forensics with TI-Nspire™ - Case File: Name That Tune
In this activity, students will analyze sound waves to calculate the frequency, or pitch, of musical notes.https://education.ti.com/en/activity/detail/forensics-with-tinspiresuptmsup--case-3-name-that-tune
Electromagnetism
Students use an animated diagram of a magnetic field and a coil. Students rotate the coil and determine the number of magnetic field lines passing through the coil at a given angle. Students graph the relationship and then consider the rate of change of the magnetic field.https://education.ti.com/en/activity/detail/electromagnetism
Electromagnets
In this activity, students will create a solenoid-type electromagnet using two different methods of coiling the wire around the core. They will use a sensor to determine the relationship between the number of turns of wire and the magnetic field strength for each method.https://education.ti.com/en/activity/detail/electromagnets