First Derivative Test
Visualize the connections between the first derivative of a function, critical points, and local extrema.https://education.ti.com/en/activity/detail/first-derivative-test
Angle-Side Relationships
Investigate some necessary conditions for creating a triangle.https://education.ti.com/en/activity/detail/angleside-relationships
Construction of the Lute of Pythagoras to investigate polynomials
The student will construct the Lute of Pythagoras and investigate the many geometric shapes created.https://education.ti.com/en/activity/detail/construction-of-the-lute-of-pythagoras-to-investigate-polynomials
Angle-Side-Side Exploration
Does knowing two sides and a non-included angle of a triangle guarantee it is a unique triangle? This activity will allow students to discover the answer by moving a point on a triangle to determine if another triangle given the same sides and non-included angle is possible.https://education.ti.com/en/activity/detail/anglesideside-exploration
Corresponding Parts of Congruent Triangles
Explore corresponding parts of congruent triangles.https://education.ti.com/en/activity/detail/corresponding-parts-of-congruent-triangles
Congruent Triangles
This activity is intended to provide students with an opportunity to discover three methods of proving triangles congruent: SSS, SAS, and ASA.https://education.ti.com/en/activity/detail/congruent-triangles_2
Exterior Angle Sum Theorem
This activity illustrates the exterior angle sum theorem by taking regular polygons with an exterior angle constructed, one at each vertex, and pulling all the vertices together to show that all exterior angles form a circle.https://education.ti.com/en/activity/detail/exterior-angle-sum-theorem
Circles - Angles and Arcs
In this activity, students will investigate inscribed angles, central angles and intercepted arcs relationships in circles.https://education.ti.com/en/activity/detail/circles--angles-and-arcs
Applications of Similar Figures
Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.https://education.ti.com/en/activity/detail/applications-of-similar-figures
Congruent or Not?
In this activity, students will investigate whether AAA, SAS, ASA, or SSA relationship guarantee that two triangles are congruent or not. This is an exploratory activity where students will need to know how to change between pages, grab and move points, and measure lengths.https://education.ti.com/en/activity/detail/congruent-or-not_1
Arcs and Central Angles of Circles
Students discover the central angles of circles plus minor and major arcs.https://education.ti.com/en/activity/detail/arcs-and-central-angles-of-circles
Congruent Triangles - Conditions that Prove Congruency
Students will investigate what conditions are necessary to prove two triangles are congruent.https://education.ti.com/en/activity/detail/congruent-triangles--conditions-that-prove-congruency
Are all Constructions Created Equal?
This activity is designed to give preservice teachers an introduction to the circle, compass and line tools in the Graphs & Geometry application of the TI-NSpire. The set of four investigations are designed to provide them with ideas on how to assess geometric constructions by identifying the dif...https://education.ti.com/en/activity/detail/are-all-constructions-created-equal
Medians in a Triangle
Students will study medians and some of their properties. A median of a triangle connects a vertex of the triangle with the midpoint of the opposite side.https://education.ti.com/en/activity/detail/medians-in-a-triangle
Area Formula Investigations
It's easy to just plug in the numbers without thinking, right? Even better, just use the calculator to find the area for you! Well, not today! Students will construct altitude and calculate the area of 5 geometric shapes using the measurement tools.https://education.ti.com/en/activity/detail/area-formula-investigations
Approximating Pi -- Archimedes method
Students will be assigned different regular polygons to construct. They will then construct a circumscribed circle, measure diameter, circumference and perimeter. The measurements will be placed into a spreadsheet and the ratios of circumference/diameter and perimeter/diameter will be calculated.https://education.ti.com/en/activity/detail/approximating-pi--archimedes-method
Minimizing Surface Area of a Cylinder Given a Fixed Volume
Students will discover the relationship between radius and height of a cylinder so that surface area of a cylinder can be minimized while maintaining a fixed volume. This is just an introduction to a project that they will begin after this investigation. Once this is completed, they will redesig...https://education.ti.com/en/activity/detail/minimizing-surface-area-of-a-cylinder-given-a-fixed-volume
A Sprinkler System Activity for the TI-Nspire TouchPad
This lesson involves the student in constructing and then creating their own designs using circles to indicate water spray from sprinklers set to full, half, and quarter circle patterns. The students learn to appreciate the ART of Math in the designs created with the Nspire TouchPad. The students...https://education.ti.com/en/activity/detail/a-sprinkler-system-activity-for-the-tinspire-touchpad
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Alternate Interior Angles
Explore the relationships of the angles formed when two parallel lines are cut by a transversal.https://education.ti.com/en/activity/detail/alternate-interior-angles
Maximizing a Paper Cone's Volume
The net for a conical paper cup is formed by cutting a sector from a circular piece of paper. What sector angle creates a net that maximizes the cone's volume? In this activity students will build concrete models, measure the dimensions and calculate the volume. Next, students will use a const...https://education.ti.com/en/activity/detail/maximizing-a-paper-cones-volume
Altitudes of Triangles
Students investigate the intersection of the altitudes of a triangle.https://education.ti.com/en/activity/detail/altitudes-of-triangles
Mystery Quadrilateral!
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown mystery quadrilateral that looks like a square. By dragging the vertices of the mystery quadrilateral, students conjecture the true name of the quadrilateral. Students support their ...https://education.ti.com/en/activity/detail/mystery-quadrilateral
Angle and Perpendicular Bisectors in a Triangle
The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle
Angle Relationships
In this activity, students explore the angle relationships that exist when two lines intersect. They begin by exploring vertical angles and linear pairs, and then expand their study to two lines and a transversal. They will see what relationships hold true when the two lines intersected by a tran...https://education.ti.com/en/activity/detail/angle-relationships