Natural Logarithm
Construct the graph of the natural logarithm function from its definition.https://education.ti.com/en/activity/detail/natural-logarithm
Intersecting the Solutions
In this teacher-led activity, students will learn to solve systems of equations graphically. They will learn the relationship between the algebraic and graphical solutions and create equations that draw upon this connection.https://education.ti.com/en/activity/detail/intersecting-the-solutions
Move Those Chains
In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...https://education.ti.com/en/activity/detail/move-those-chains
How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
Complex Roots: A Graphical Solution
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph.https://education.ti.com/en/activity/detail/complex-roots-a-graphical-solution
Exploring Asymptotes
In this activity, students will explore asymptotes and singularities, paying particular attention to the connection between the algebraic and graphical representations.https://education.ti.com/en/activity/detail/exploring-asymptotes
Exploring Complex Roots
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph. Open the file CollegeAlg_ComplexRoots.tns on your TI-Nspire handheld device to work through the activity.https://education.ti.com/en/activity/detail/exploring-complex-roots
Exploring Inverse Functions
Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.https://education.ti.com/en/activity/detail/exploring-inverse-functions
Exponential Growth
The purpose of this exploration is to investigate properties of exponential functions including the relationship between the graphical and algebraic forms of the functions.https://education.ti.com/en/activity/detail/exponential-growth
Velocity, Position, Distance
Work with linked representations of the horizontal motion of an object.https://education.ti.com/en/activity/detail/velocity-position-distance
Graphical Analysis
Students will analyze graphs of polynomials finding intervals over which the function is increasing or decreasing and positive or negative, as well as the function’s relative minimum and maximum values and x- and y-intercepts.https://education.ti.com/en/activity/detail/graphical-analysis
Graphs of Polynomial Functions
The activity begins by having students compare functions to introduce the concept of end behavior. Then they graph cubics and quartics, noting the respective end behaviors for positive and negative leading coefficients. Finally, they compare quadratics to quartics and cubics to quintics to discov...https://education.ti.com/en/activity/detail/graphs-of-polynomial-functions
Is it Rare?
Students use the Poisson distribution to determine the probabilities for various numbers of hurricanes hitting the United States in a given year. Students will also explore the graph of the Poisson distribution and how it behaves.https://education.ti.com/en/activity/detail/is-it-rare_1
One- and Two-Variable Statistics--Review
In this activity, students will review the concepts that they have learned thus far in statistics. The first part of the activity includes one-variable topics such as graphing quantitative variables, calculating measures of central tendency and spread, and making comparisons. The second part incl...https://education.ti.com/en/activity/detail/one-and-twovariable-statisticsreview_1
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Secant/Tangent Line Connection
Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...https://education.ti.com/en/activity/detail/secanttangent-line-connection
Sign of the Derivative
Make a connection between the sign of the derivative and the increasing or decreasing nature of the graph.https://education.ti.com/en/activity/detail/sign-of-the-derivative
Probability Simulations
Students use the random integer (randInt) command to simulate probability experiments. They also graph the number of trials and corresponding probabilities to observe the Law of Large Numbers. Simulated experiments involve tossing a coin, spinning a spinner, and observing the gender of children i...https://education.ti.com/en/activity/detail/probability-simulations_1
Position and Piecewise Velocity
This lesson involves creating and comparing graphical representations of velocity and position based on real-life scenarios.https://education.ti.com/en/activity/detail/position-and-piecewise-velocity
Cardioid Patterns - Discover Using Graphs
This activity will give students an opportunity to discover a pattern in the graphs of cardioids.https://education.ti.com/en/activity/detail/cardioid-patterns--discover-using-graphs
Cell Phone Range
Students will learn to identify the domain and range of various real-world step functions. They will graphically explore numerical data points and observe step functions. Open and closed points on a graph are investigated and discussed.https://education.ti.com/en/activity/detail/cell-phone-range_1
Can You Make My Graph?
Students are to find the equations of graphs of trigonometric functions (using sine and cosine) and will also identify values for the amplitude, period, phase shift, and vertical shift. This activity is a modified version of the activity "What's the Equation?" originally made by Lauren Jensen.https://education.ti.com/en/activity/detail/can-you-make-my-graph
Multiplicity of Zeros of Functions
Students will utilize graphs and equations of five polynomial functions to determine the zeros of the functions and whether the functions cross the x-axis at these zeros or just touch the x-axis at the zeros. Then students will determine the degree of the polynomial functions and the effect the d...https://education.ti.com/en/activity/detail/multiplicity-of-zeros-of-functions
Boats in Motion
Students make observations about the motion of a boat going up and down the river. They will solve the system of equations algebraically and graphically.https://education.ti.com/en/activity/detail/boats-in-motion_1
Multiplication & Division of Functions
Students will determine the resulting functions produced from the multiplication and division of two functions. They will explore the graphical representation of the resulting function and support their algebraic solution by determining if the graphs coincide. Additionally, students will evaluate...https://education.ti.com/en/activity/detail/multiplication--division-of-functions