Maximizing a Paper Cone's Volume
The net for a conical paper cup is formed by cutting a sector from a circular piece of paper. What sector angle creates a net that maximizes the cone's volume? In this activity students will build concrete models, measure the dimensions and calculate the volume. Next, students will use a const...https://education.ti.com/en/activity/detail/maximizing-a-paper-cones-volume
Angle Relationships
In this activity, students explore the angle relationships that exist when two lines intersect. They begin by exploring vertical angles and linear pairs, and then expand their study to two lines and a transversal. They will see what relationships hold true when the two lines intersected by a tran...https://education.ti.com/en/activity/detail/angle-relationships
Angles & Chords in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/angles--chords-in-a-circle
Triangle Sides & Angles
Students will explore side and angle relationships in a triangle. First, students will discover where the longest (and shortest) side is located relative to the largest (and smallest) angle. Then, students will explore the Isosceles Triangle Theorem and its converse. Finally, students will determ...https://education.ti.com/en/activity/detail/triangle-sides--angles
Scale Factor Area Perimeter
Explore the relationship of perimeter and area in similar triangles when the scale factor is changed.https://education.ti.com/en/activity/detail/scale-factor-area-perimeter
The Hinge Theorems
Students will explore the inequality relationships that arise when some of the triangle congruence conditions are in place but others are not. The SAS Inequality Theorem and the SSS Inequality Theorem are often referred to as the Hinge Theorem and its converse. These two theorems concern inequali...https://education.ti.com/en/activity/detail/the-hinge-theorems_1
Regular Polygons - Angle Measurements
Students will investigate the number of degrees in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the sum of the measures of the degrees of the polygons.https://education.ti.com/en/activity/detail/regular-polygons--angle-measurements
The Magic of Central Angles
This activity allows students to investigate the relationship between central angles and the arcs they intercept.https://education.ti.com/en/activity/detail/the-magic-of-central-angles
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
Secants and Angles in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle
Secants and Segments in a Circle
This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segments formed by two secants drawn from a common external point to a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-segments-in-a-circle
Secants, Tangents, And Angle Measures
This activity is intended to be used as an interactive tool to help students learn about the relationships between the the angles and arcs formed with intersecting secant and tangent lines.https://education.ti.com/en/activity/detail/secants-tangents-and-angle-measures
Soap Warehouse: The Shortest Distance Between Stores
In this investigation we are going to determine the best place to build a warehouse so that it can service three stores with the least amount of travel.https://education.ti.com/en/activity/detail/soap-warehouse-the-shortest-distance-between-stores
Secants, Tangents and Arcs
Explore the angle and arc relationships for two intersecting lines that intersect a circle.https://education.ti.com/en/activity/detail/secants-tangents-and-arcs
Special Angles formed by Parallel Lines
This activity will help students see the relationship among the angles formed by two parallel lines and the transversal cuts through the lines.https://education.ti.com/en/activity/detail/special-angles-formed-by-parallel-lines
Special Segments in Triangles
In this activity, students construct medians, altitudes, angle bisectors, and perpendicular bisectors of triangles. They then drag the vertices to see where the intersections of the segments lie in relation to the triangle, and they measure distances to identify relationships. They see that the i...https://education.ti.com/en/activity/detail/special-segments-in-triangles_1
Remote Interior Angles
Students use the handheld activity and questions to explore remote interior angles.https://education.ti.com/en/activity/detail/remote-interior-angles
Sailing Away
In this activity, students will explore AAA and SSS relationships in triangles to support understanding of the concepts of triangle similarity and congruence.https://education.ti.com/en/activity/detail/sailing-away
How far do you live from school?
Prior to this activity students determine how far they live from school and how long it takes them to get to school. They analyze this data using various types of graphs and draw conclusions regarding the relationship between time and distance. They also look at zip codes and explore factors that...https://education.ti.com/en/activity/detail/how-far-do-you-live-from-school
Long Run
This lesson involves investigating simulations used to observe long-run relative frequencies.https://education.ti.com/en/activity/detail/long-run
Linear Modeling
This lesson involves modeling relationship between variables related to the operational cost of airplanes.https://education.ti.com/en/activity/detail/linear-modeling
Linear Equations, How Can I Tell?
This is a lesson to be used when introducing linear equations. The class is to determine parallel slopes, slope of the line, and slope- intercept form while investigating the graphs.https://education.ti.com/en/activity/detail/linear-equations-how-can-i-tell
Supertall Skyscrapers
In this activity, students use their handhelds to measure scale drawings of famous “supertall” skyscrapers. They first check that the Sears Tower is drawn to scale and then use their measurements to calculate that scale. Next, they write and solve proportions to find the heights of other skyscrap...https://education.ti.com/en/activity/detail/supertall-skyscrapers
How Does a Spring Scale Work?
In this lesson, teachers will use a spring to help students learn that the constant of proportionality between two proportional quantities is the unit rate of change.https://education.ti.com/en/activity/detail/how-does-a-spring-scale-work
Soda Problem: Finding the relationship between Sodium and Sugar
The students will use nutrition label data of certain sodas to create and analyze a scatterplot of the amount of sodium versus the amount of sugar in various soft drinks. They will put the data into lists, create scatterplots, discuss correlations, acquire the line of best fit, and predict other...https://education.ti.com/en/activity/detail/soda-problem-finding-the-relationship-between-sodium-and-sugar