The Radian Sector
In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.https://education.ti.com/en/activity/detail/the-radian-sector
Continuity and Differentiability 2
Explore piecewise graphs and determine conditions for continuity and differentiability.https://education.ti.com/en/activity/detail/continuity-and-differentiability-2
Shortest Distance
Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.https://education.ti.com/en/activity/detail/shortest-distance
Shortest Distances
Students will explore three situations involving distances between points and lines. First, the minimum distance between two points leads to the Triangle Inequality Theorem. Then, the shortest distance from a point to a line is investigated. Finally, students find the smallest total distan...https://education.ti.com/en/activity/detail/shortest-distances
Side Length, Perimeter, and Area of a Rectangle
Explore the effects of changing base (or height) of a rectangle on it's perimeter and area.https://education.ti.com/en/activity/detail/side-length-perimeter-and-area-of-a-rectangle
Side-Side-Angle: The Ambiguous Case
Experiment with segment lengths and angle measures.https://education.ti.com/en/activity/detail/sidesideangle-the-ambiguous-case
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Paths of Rectangles
This exploration for preservice teachers, looks at how the lengths of the sides of rectangles with equal areas are related. The rectangles are constructed so that one vertex is at the origin. The path of the opposite vertex is an example of indirect variation and demonstrates a connection between...https://education.ti.com/en/activity/detail/paths-of-rectangles
Transformers
Students explore a special subset of the transformations of a square called the symmetry group.https://education.ti.com/en/activity/detail/transformers
Patterns in Area - Impact of Changes in Length and Width
Students will explore what happens to the area of a rectangle if you double the length and width.https://education.ti.com/en/activity/detail/patterns-in-area--impact-of-changes-in-length-and-width
Transformations With Lists
Students use list operations to perform reflections, rotations, translations and dilations on a figure, and graph the resulting image using a scatter plot.https://education.ti.com/en/activity/detail/transformations-with-lists_1
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
3D Parametric
In this activity, students will review the concepts of parametric and polar equations. By using the 3D graphing capabilities of the TI-Nspire handheld, students will be able to extend these ideas to the area of solids of revolution, arc length and kinematics.https://education.ti.com/en/activity/detail/3d-parametric
Transformations: Reflections and Rotations
This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations
Transformations: Reflections
Explore what a reflection does to an object.https://education.ti.com/en/activity/detail/transformations-reflections
Parallel Lines and the Transversals that Cross Them!
Students will explore the relationships between angles formed by parallel lines crossed by transversals. While there are other activities that may address similar topics, the questions presented to students in this activity bring a fresh perspective to student discovery.https://education.ti.com/en/activity/detail/parallel-lines-and-the-transversals-that-cross-them
Dog Run
This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.https://education.ti.com/en/activity/detail/dog-run
Applications of Critical Points
Students will examine the relationship between critical points and local extrema through real-world examples. Students will zoom in on the critical points to see if the curve becomes linear to determine if the function is differentiable at the critical point. They will then discover that the sign...https://education.ti.com/en/activity/detail/applications-of-critical-points
Exploring Cavalieri's Principle
Students will explore Cavalieri's Principle for cross sectional area and volume.https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1
Properties of Special Quadrilaterals Exploration
Students are given a TI-Nspire file with special quadrilaterals so that they can use the dynamic measurement capabilities of the TI-Nspire to explore which properties always hold true for each quadrilateral.https://education.ti.com/en/activity/detail/properties-of-special-quadrilaterals-exploration
Cyclic Quadrilaterals
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Cyclic Quadrilaterals
Students will explore cyclic quadrilaterals and their properties.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals_2
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1