Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Implicit Differentiation Tangent Line Problem
How to solve Implicit Differentiation Tangent Line Problem in a Ti-Nspire Cas CXhttps://education.ti.com/en/activity/detail/implicit-differentiation-tangent-line-problem
Polygons & Angles: Looking for Patterns
This activity explores the relationships of various polygons and their angles. This is a discovery lesson and leads students through data and asks them to make conjectures about the angles of a triangle, quadrilateral, and pentagon. This lesson explores interior angles, exterior angles, and as...https://education.ti.com/en/activity/detail/polygons--angles--looking-for-patterns
Exploring the Black Box of Quadrilaterals
The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals
Possible Lengths of Sides of Triangles
The first problem in this activity has students explore the varying length of the third side of a triangle when 2 sides are given. They will discover that the length of the third side must be between the difference and the sum of the other 2 sides. The second problem extends this idea of the le...https://education.ti.com/en/activity/detail/possible-lengths-of-sides-of-triangles
Properties of Parallel Lines
This activity is designed to incorporate the TI-Nspire Navigator system to provide a paperless activity. Students will investigate the relationships formed when two parallel lines are cut by a transversal. They will make observations from angle measurements. This is a great activity for beginn...https://education.ti.com/en/activity/detail/properties-of-parallel-lines
Exploring the Geometric Means of a Right Triangle - When the Altitude to the Hypotenuse Is Drawn
Students will explore the concept of geometric mean and solve right triangle problems using geometric mean proportions. A TI-Nspire activity demonstrates interactively the geometric mean relationship, and an activity sheet applies the relationship to solve triangle problem. Most discussions of g...https://education.ti.com/en/activity/detail/exploring-the-geometric-means-of-a-right-triangle--when-the-altitude-to-the-hypotenuse-is-drawn
Can I Make a Triangle?
This TI-Nspire activity is for the Triangle Inequality Theorem. There are 3 problems that contain 3 segments each. The student tries to make triangles with these segments. They compare the lengths of the shortest to the length of the longest to see if the inequality is true or false. For the...https://education.ti.com/en/activity/detail/can-i-make-a-triangle
Angles of a Triangle
This activity explores the various relationships of the angles of a triangle. It starts with an interior angle and its corresponding exterior angle. Then the sum of the interior angles. Finally, the relationship between one exterior angle and its remote interior angles. The students are prov...https://education.ti.com/en/activity/detail/angles-of-a-triangle_2
Are all Constructions Created Equal?
This activity is designed to give preservice teachers an introduction to the circle, compass and line tools in the Graphs & Geometry application of the TI-NSpire. The set of four investigations are designed to provide them with ideas on how to assess geometric constructions by identifying the dif...https://education.ti.com/en/activity/detail/are-all-constructions-created-equal
Angles in Polygons
This is a self-contained activity that is designed to incorporate the TI-Nspire Navigator system which provides for a paperless activity that can be easily managed during and after the class period. Students will investigate the relationships of the interior and exterior angles in a polygon. T...https://education.ti.com/en/activity/detail/angles-in-polygons
Logic
This document reviews logical reasoning with problems on compound statements, conditional statements, and algebraic proofs.https://education.ti.com/en/activity/detail/logic
Mystery Quadrilateral!
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown mystery quadrilateral that looks like a square. By dragging the vertices of the mystery quadrilateral, students conjecture the true name of the quadrilateral. Students support their ...https://education.ti.com/en/activity/detail/mystery-quadrilateral
Angles & Chords in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/angles--chords-in-a-circle
The Ladder Problem Revisited
In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...https://education.ti.com/en/activity/detail/the-ladder-problem-revisited
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
Secants and Angles in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle
Secants and Segments in a Circle
This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segments formed by two secants drawn from a common external point to a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-segments-in-a-circle
Solving for Sides in a Right Triangle
This activity was designed for the Grade 11 College Math course in the Ontario curriculum. Students are expected to solve problems, including those that arise from real-world applications, by determining the measures of the sides and angles of right triangles using the primary trigonometric ratio...https://education.ti.com/en/activity/detail/solving-for-sides-in-a-right-triangle
How far do you live from school?
Prior to this activity students determine how far they live from school and how long it takes them to get to school. They analyze this data using various types of graphs and draw conclusions regarding the relationship between time and distance. They also look at zip codes and explore factors that...https://education.ti.com/en/activity/detail/how-far-do-you-live-from-school
Supertall Skyscrapers
In this activity, students use their handhelds to measure scale drawings of famous “supertall” skyscrapers. They first check that the Sears Tower is drawn to scale and then use their measurements to calculate that scale. Next, they write and solve proportions to find the heights of other skyscrap...https://education.ti.com/en/activity/detail/supertall-skyscrapers
Lines of Fit
This lesson involves informally fitting a straight line for a given data set that represents mean verbal and mathematics scores on SAT in 2004 across all 50 states and Washington, D.C.https://education.ti.com/en/activity/detail/lines-of-fit
Quadratic Unit Activity #5: Scavenger Hunt #1
Students are to use whatever technology they have to take pictures or find images that are quadratic. The images are then put in a .tns file for them to find the equations. You may use my file by deleting the images and inserting your own. If you do not have the capability to do that, I have prov...https://education.ti.com/en/activity/detail/quadratic-unit-activity-5-scavenger-hunt-1
Quadratic Unit Activity #6: Scavenger Hunt #2
Students are to use whatever technology they have to take pictures or find images that are quadratic. The images are then put in a .tns file for them to find the equations. You may use my file by deleting the images and inserting your own. If you do not have the capability to do that, I have prov...https://education.ti.com/en/activity/detail/quadratic-unit-activity-6-scavenger-hunt-2
Exploring Graphs of Inequalities
Test ordered pairs to determine if they are part of the solution set to an inequality.https://education.ti.com/en/activity/detail/exploring-graphs-of-inequalities