Trig Transformations-84
In this activity, students will determine the type of function modeled by the height of a capsule on the London Eye observation wheel.https://education.ti.com/en/activity/detail/trig-transformations@84
Convergence of Taylor Series
A Taylor Series for a function becomes the function as the number of terms increases towards infinity.https://education.ti.com/en/activity/detail/convergence-of-taylor-series
Continuity and Differentiability of Functions
Students will manipulate piecewise functions to make them continuous. Once students create a continuous function, they will calculate derivatives to determine if the function is also differentiable.https://education.ti.com/en/activity/detail/continuity-and-differentiability-of-functions
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Derivative Function
Transition from thinking of the derivative at a point to thinking of the derivative as a function.https://education.ti.com/en/activity/detail/derivative-function
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Polygons - Diagonals
Students will investigate the number of diagonals in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the number of diagonals of the polygons. Some prior familiarity with constructing segments and basic functions of the TI-Nsp...https://education.ti.com/en/activity/detail/polygons--diagonals
Proof by Counterexample of the SSA and AAA Cases
Students will use the geometry functions of the Nspire to create triangles with SSA and AAA details. Then these counterexamples are used to disprove possible SSA and AAA conjectures.https://education.ti.com/en/activity/detail/proof-by-counterexample-of-the-ssa-and-aaa-cases
Exploring the Geometric Means of a Right Triangle - When the Altitude to the Hypotenuse Is Drawn
Students will explore the concept of geometric mean and solve right triangle problems using geometric mean proportions. A TI-Nspire activity demonstrates interactively the geometric mean relationship, and an activity sheet applies the relationship to solve triangle problem. Most discussions of g...https://education.ti.com/en/activity/detail/exploring-the-geometric-means-of-a-right-triangle--when-the-altitude-to-the-hypotenuse-is-drawn
Inverse Derivative
Visualize the reciprocal relationship between the derivative of a function and the derivative of its inverse.https://education.ti.com/en/activity/detail/inverse-derivative
Limits of Functions
Investigate limits of functions at a point numerically.https://education.ti.com/en/activity/detail/limits-of-functions
Extrema
Students will learn how to find and label extrema using first and second derivatives, be able to inspect a graph and determine which extrema the function has, and be able to use Trace, fMin, and fMax to verify the computed answers and find critical values for parametric functions.https://education.ti.com/en/activity/detail/extrema
First Derivative Test
Visualize the connections between the first derivative of a function, critical points, and local extrema.https://education.ti.com/en/activity/detail/first-derivative-test
Exponential Functions and the Natural Logarithm
Discover a surprising property involving the relative growth rate of an exponential function.https://education.ti.com/en/activity/detail/exponential-functions-and-the-natural-logarithm
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Exploring Vertical Asymptotes
Students will be able to determine the domain of rational functions, use algebraic concepts to determine the vertical asymptotes of a rational function, determine the removable discontinuities of a rational function, and describe the graph of a rational function given the equation.https://education.ti.com/en/activity/detail/exploring-vertical-asymptotes
Growing Patterns
This lesson involves using pattern growth to construct functions.https://education.ti.com/en/activity/detail/growing-patterns
Quadratic Unit Activity #1: Graphing a Parabola
This is the first activity in a series on vertex form of a quadratic for algebra I. This introduces the 'squaring' function.https://education.ti.com/en/activity/detail/quadratic-unit-activity-1-graphing-a-parabola
Quadratic Unit Activity #2: What's the Equation? Quadratic Functions
This is the second activity for the Quadratic Unit. This activity allows students to use sliders to match various quadratic functions in vertex form.https://education.ti.com/en/activity/detail/quadratic-unit-activity-2-whats-the-equation-quadratic-functions