Printing Your Own Books - is it more cost effective?
In this activity, students will create functions based on real-life scenarios, fill out a table of values, and critically analyze characteristics of graphs.https://education.ti.com/en/activity/detail/printing-books
Exploring Transformations
Explore transformations of an absolute value function.https://education.ti.com/en/activity/detail/exploring-transformations
Back In Time?
Students will explore the definition of a function through use of a graph, a set of ordered pairs, and an input-output diagram.https://education.ti.com/en/activity/detail/back-in-time_1
Inscribed Regular Polygons
Students will calculate the changing area and perimeter of inscribed polygons as the number of sides increase. The measurements will be recorded in a spreadsheet for analysis. Students will be learning to use the measurement tools and the Hide/Show function of the TI-Nspire. Students will be aske...https://education.ti.com/en/activity/detail/inscribed-regular-polygons
Algebra Nomograph
This activity is similar to a function machine. The nomograph is comprised of two vertical number lines, input on the left and output on the right. The transformation of input to output is illustrated dynamically by an arrow that connects a domain entry to its range value. Students try to find th...https://education.ti.com/en/activity/detail/algebra-nomograph
Trains in Motion
Compare and contrast the motion of two objects and how it corresponds to distance as a function of time.https://education.ti.com/en/activity/detail/trains-in-motion_1
Transformations of a Quadratic Function
Explore transformations of a quadratic function.https://education.ti.com/en/activity/detail/transformations-of-a-quadratic-function
Transformations of Functions 1
This lesson investigates vertical and horizontal translations of a function.https://education.ti.com/en/activity/detail/transformations-of-functions-1
Transformations of Functions 2
Investigate vertical stretches and reflections through the x-axis of a function.https://education.ti.com/en/activity/detail/transformations-of-functions-2
Zeros of a Quadratic Function
Merge graphical and algebraic representations of a quadratic function and its linear factors.https://education.ti.com/en/activity/detail/zeros-of-a-quadratic-function
Definition of Functions
This lesson involves examining relationships and functions and their inputs, outputs, domains, and ranges.https://education.ti.com/en/activity/detail/definition-of-functions
Helping students learn how to use built-in functions on the TI nspire
Students will follow step-by-step directions to become familiar with how to use the TI nspire's built in functions. Tutorial includes converting to decimal, approximating fractions, finding remainders, finding LCM, using factorials, creating mixed numbers, and factoring numbers to their prime fac...https://education.ti.com/en/activity/detail/helping-students-learn-how-to-use-builtin-functions-on-the-ti-nspire
Exploring Functions
Students will explore functions and identify domain and range using graphs, equations, and function tables. This activity was created for students who have had a lesson of functions and have some basic knowledge of TI-Nspire technology.https://education.ti.com/en/activity/detail/exploring-functions
Examining Patterens in a Table, Function Rule, and Graphs
In this activity, students will identify characteristics of proportional and non-proportional linear relationships by examining patterns in a table, function rules, and a graph. Students will distinguish between proportional and non-proportional relationships by comparing patterns in table, funct...https://education.ti.com/en/activity/detail/examining-patterens-in-a-table-function-rule-and-graphs
Inverse Variation
Students explore multiple representations of the inverse variation function, beginning with a geometric representation (a rectangle with fixed area), and progressing to a table of values, an algebraic expression, and finally a graph.https://education.ti.com/en/activity/detail/inverse-variation
Polar Graphs
Relate polar coordinates to rectangular coordinates and plot polar functions.https://education.ti.com/en/activity/detail/polar-graphs
Mean Value Theorem
Calculate slopes of secant lines, create tangent lines with the same slope, and note observations about the functions and slopes.https://education.ti.com/en/activity/detail/mean-value-theorem_1
Maximums, Minimums, and Zeroes
Determine when a function has a maximum or minimum based on the derivative of the function.https://education.ti.com/en/activity/detail/maximums-minimums-and-zeroes
MacLaurin Polynomials
Students will use TI-Nspire technology to explore MacLaurin polynomials. They will develop polynomials that approximate very special functions.https://education.ti.com/en/activity/detail/maclaurin-polynomials_1
Natural Logarithm
Construct the graph of the natural logarithm function from its definition.https://education.ti.com/en/activity/detail/natural-logarithm
Move Those Chains
In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...https://education.ti.com/en/activity/detail/move-those-chains
How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
MVT for Integrals
Demonstrate how the average value of a function over an interval is related to the definite integral.https://education.ti.com/en/activity/detail/mvt-for-integrals
The First Fundamental Theorem of Calculus
Make visual connections between a function and its definite integral.https://education.ti.com/en/activity/detail/the-first-fundamental-theorem-of-calculus
The Derivatives of Logs
Students will use the Chain Rule to find the derivative of more complex exponential and logarithmic functions.https://education.ti.com/en/activity/detail/the-derivatives-of-logs