Education Technology
< Previous | 5175 - 5200 of 18009 results |  Next >

Elevator: Height and Velocity

Introduce ideas related to rectilinear motion.
https://education.ti.com/en/activity/detail/elevator-height-and-velocity

Parallel Lines and Angles

Students will use TI-Nspire technology to investigate the relationships between two corresponding angles and between two alternate interior angles. At the end of this activity, students should be able to discover that if two parallel lines are cut by a transversal the pairs of corresponding angle...
https://education.ti.com/en/activity/detail/parallel-lines-and-angles

Transformations: Translations

Investigate what a triangle will look like when it is translated horizontally or vertically.
https://education.ti.com/en/activity/detail/transformations-translations

Properties of Triangles

In this activity, students explore different types of triangles and find the interior and exterior angle sum to form a paragraph proof.
https://education.ti.com/en/activity/detail/properties-of-triangles

Proportional Segments

The purpose of this activity is to investigate the relationship between segments formed by drawing a line parallel to one side of a triangle or by drwing and angle bisector of one the angles.
https://education.ti.com/en/activity/detail/proportional-segments

Diameter and Circumference Relationship

A short activity that helps to demonstrate the relationship between diameter and circumference.
https://education.ti.com/en/activity/detail/diameter-and-circumference-relationship

Implicit Differentiation Tangent Line Problem

How to solve Implicit Differentiation Tangent Line Problem in a Ti-Nspire Cas CX
https://education.ti.com/en/activity/detail/implicit-differentiation-tangent-line-problem

Possible Lengths of Sides of Triangles

The first problem in this activity has students explore the varying length of the third side of a triangle when 2 sides are given. They will discover that the length of the third side must be between the difference and the sum of the other 2 sides. The second problem extends this idea of the le...
https://education.ti.com/en/activity/detail/possible-lengths-of-sides-of-triangles

Properties of Parallel Lines

This activity is designed to incorporate the TI-Nspire Navigator system to provide a paperless activity. Students will investigate the relationships formed when two parallel lines are cut by a transversal. They will make observations from angle measurements. This is a great activity for beginn...
https://education.ti.com/en/activity/detail/properties-of-parallel-lines

Exploring Midpoints

This is a quick activity to help students see the relationship of the midpoint of a segment.
https://education.ti.com/en/activity/detail/exploring-midpoints

Exploring Midsegments of a Triangle

Students will discover the relationships between a midsegment of a triangle and its third side.
https://education.ti.com/en/activity/detail/exploring-midsegments-of-a-triangle

Exploring Parallel Lines and Angles

Students will explore the relationships between pairs of angles formed when two parallel lines are cut by a transversal. They will identify special pairs of angles, measure all the angles formed by two parallel lines cut by a transversal, and then look for patterns among the measures.
https://education.ti.com/en/activity/detail/exploring-parallel-lines-and-angles

Cell Phone Towers

In this activity students explore the locus of a point that is located twice as far from a given point A as it is from given point B. The locus is Apollonius circle. Students discover that the locus is a circle and then prove it. The key property: If a ray bisects an angle of a triangle, then it ...
https://education.ti.com/en/activity/detail/cell-phone-towers

Area of a Triangle Between Parallel Lines

This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.
https://education.ti.com/en/activity/detail/area-of-a-triangle-between-parallel-lines

Balancing Act

Students will explore the centriod of a triangle. They will discover that it is the center of gravity. They will balance a cardboard triangle on the end of a pencil. Then they will construct the medians with folds and pencil. After students have seen that the center of gravity is the point ...
https://education.ti.com/en/activity/detail/balancing-act

Constructing Regular Polygons - Angles of Rotational Symmetry

This activity is designed to be used with the Geometry textbook "Math Connections - 2B" p. 295: #4
https://education.ti.com/en/activity/detail/constructing-regular-polygons--angles-of-rotational-symmetry

Construction of the Lute of Pythagoras to investigate polynomials

The student will construct the Lute of Pythagoras and investigate the many geometric shapes created.
https://education.ti.com/en/activity/detail/construction-of-the-lute-of-pythagoras-to-investigate-polynomials

Angle-Side-Side Exploration

Does knowing two sides and a non-included angle of a triangle guarantee it is a unique triangle? This activity will allow students to discover the answer by moving a point on a triangle to determine if another triangle given the same sides and non-included angle is possible.
https://education.ti.com/en/activity/detail/anglesideside-exploration

Approximating Pi -- Archimedes method

Students will be assigned different regular polygons to construct. They will then construct a circumscribed circle, measure diameter, circumference and perimeter. The measurements will be placed into a spreadsheet and the ratios of circumference/diameter and perimeter/diameter will be calculated.
https://education.ti.com/en/activity/detail/approximating-pi--archimedes-method

Angles in Polygons

This is a self-contained activity that is designed to incorporate the TI-Nspire Navigator system which provides for a paperless activity that can be easily managed during and after the class period. Students will investigate the relationships of the interior and exterior angles in a polygon. T...
https://education.ti.com/en/activity/detail/angles-in-polygons

Addition of Parts

This activity is a self-contained discussion of the topic of segment and angle addition and allows the teacher to focus on the flow of the class rather than explanation. Students will be able to work through this activity easily and reach usable conclusions on their own. Also, examples are prov...
https://education.ti.com/en/activity/detail/addition-of-parts

Maximizing a Paper Cone's Volume

The net for a conical paper cup is formed by cutting a sector from a circular piece of paper. What sector angle creates a net that maximizes the cone's volume? In this activity students will build concrete models, measure the dimensions and calculate the volume. Next, students will use a const...
https://education.ti.com/en/activity/detail/maximizing-a-paper-cones-volume

Angle and Perpendicular Bisectors in a Triangle

The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...
https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle

Angles & Chords in a Circle

This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.
https://education.ti.com/en/activity/detail/angles--chords-in-a-circle

Triangle: Side Lengths and Angle Measures

The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.
https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures