Triangle Midsegment Exploration
The activity has the students investigate the relationship of the midsegment to the third side of the triangle. In addition the students investigate the area of the smaller triangles compared to the larger one and uses the results to solve the "campground" problem. There is a set of follow-up q...https://education.ti.com/en/activity/detail/triangle-midsegment-exploration
Paths of Rectangles
This exploration for preservice teachers, looks at how the lengths of the sides of rectangles with equal areas are related. The rectangles are constructed so that one vertex is at the origin. The path of the opposite vertex is an example of indirect variation and demonstrates a connection between...https://education.ti.com/en/activity/detail/paths-of-rectangles
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Transformations: Reflections and Rotations
This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations
Parallel Lines and Angles
Students will use TI-Nspire technology to investigate the relationships between two corresponding angles and between two alternate interior angles. At the end of this activity, students should be able to discover that if two parallel lines are cut by a transversal the pairs of corresponding angle...https://education.ti.com/en/activity/detail/parallel-lines-and-angles
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Discovering the Triangle Inequality Theorem with the TI-Nspire
Students progress through a series of investigations regarding the lengths of the sides of a triangle. This activity, for discovering the Triangle Inequality Theorem, can be used as either a teacher demonstration or as a classroom activity.https://education.ti.com/en/activity/detail/discovering-the-triangle-inequality-theorem-with-the-tinspire
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Proportional Segments
The purpose of this activity is to investigate the relationship between segments formed by drawing a line parallel to one side of a triangle or by drwing and angle bisector of one the angles.https://education.ti.com/en/activity/detail/proportional-segments
Diameter and Circumference Relationship
A short activity that helps to demonstrate the relationship between diameter and circumference.https://education.ti.com/en/activity/detail/diameter-and-circumference-relationship
Points of Concurrency in Triangles
In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles
Proof by Counterexample of the SSA and AAA Cases
Students will use the geometry functions of the Nspire to create triangles with SSA and AAA details. Then these counterexamples are used to disprove possible SSA and AAA conjectures.https://education.ti.com/en/activity/detail/proof-by-counterexample-of-the-ssa-and-aaa-cases
Area of a Triangle Between Parallel Lines
This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.https://education.ti.com/en/activity/detail/area-of-a-triangle-between-parallel-lines
Building 3-D Initials with a Vanishing Point
Students will use a vanishing point for a one point perspective drawing of an initial of their choice.https://education.ti.com/en/activity/detail/building-3d-initials-with-a-vanishing-point
Applications of Similar Figures
Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.https://education.ti.com/en/activity/detail/applications-of-similar-figures
Arcs and Central Angles of Circles
Students discover the central angles of circles plus minor and major arcs.https://education.ti.com/en/activity/detail/arcs-and-central-angles-of-circles
Congruent Triangles - Conditions that Prove Congruency
Students will investigate what conditions are necessary to prove two triangles are congruent.https://education.ti.com/en/activity/detail/congruent-triangles--conditions-that-prove-congruency
Are all Constructions Created Equal?
This activity is designed to give preservice teachers an introduction to the circle, compass and line tools in the Graphs & Geometry application of the TI-NSpire. The set of four investigations are designed to provide them with ideas on how to assess geometric constructions by identifying the dif...https://education.ti.com/en/activity/detail/are-all-constructions-created-equal
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Angles & Chords in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/angles--chords-in-a-circle
Triangle: Side Lengths and Angle Measures
The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures
The Geometric Mean
In this activity, students will establish that several triangles are similar and then determine that the altitude to the hypotenuse of a right triangle is the geometric mean between the segments into which it divides the hypotenuse.https://education.ti.com/en/activity/detail/the-geometric-mean_1
The Magic of Central Angles
This activity allows students to investigate the relationship between central angles and the arcs they intercept.https://education.ti.com/en/activity/detail/the-magic-of-central-angles
The Pythagorean Theorem—and More
Students construct a triangle and find all angle and side measures. They practice dragging the vertices to form certain types of triangles, and then they confirm the Pythagorean Theorem for right triangles. Moreover, they discover the types of triangle that occur when c2 a2 + b2 or when c2 > a2 +...https://education.ti.com/en/activity/detail/the-pythagorean-theoremand-more