Arcs and Central Angles of Circles
Students discover the central angles of circles plus minor and major arcs.https://education.ti.com/en/activity/detail/arcs-and-central-angles-of-circles
Congruent Triangles - Conditions that Prove Congruency
Students will investigate what conditions are necessary to prove two triangles are congruent.https://education.ti.com/en/activity/detail/congruent-triangles--conditions-that-prove-congruency
Are all Constructions Created Equal?
This activity is designed to give preservice teachers an introduction to the circle, compass and line tools in the Graphs & Geometry application of the TI-NSpire. The set of four investigations are designed to provide them with ideas on how to assess geometric constructions by identifying the dif...https://education.ti.com/en/activity/detail/are-all-constructions-created-equal
Minimizing Surface Area of a Cylinder Given a Fixed Volume
Students will discover the relationship between radius and height of a cylinder so that surface area of a cylinder can be minimized while maintaining a fixed volume. This is just an introduction to a project that they will begin after this investigation. Once this is completed, they will redesig...https://education.ti.com/en/activity/detail/minimizing-surface-area-of-a-cylinder-given-a-fixed-volume
Making Hay While the Sun Shines & Not Losing It in the Rain (The Geometry of the Big Round Bale)
This activity explores the volume of the hay bale and the percent of loss as the radius of the bale decreases. The extension collects data from the constructed cylinder in a spreadsheet and graphs it. The graphs are modeled with quadratic functions and transformations of quadratic functions can...https://education.ti.com/en/activity/detail/making-hay-while-the-sun-shines--not-losing-it-in-the-rain--the-geometry-of-the-big-round-bale
Angles & Chords in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/angles--chords-in-a-circle
Triangle: Side Lengths and Angle Measures
The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures
The Geometric Mean
In this activity, students will establish that several triangles are similar and then determine that the altitude to the hypotenuse of a right triangle is the geometric mean between the segments into which it divides the hypotenuse.https://education.ti.com/en/activity/detail/the-geometric-mean_1
The Magic of Central Angles
This activity allows students to investigate the relationship between central angles and the arcs they intercept.https://education.ti.com/en/activity/detail/the-magic-of-central-angles
The Pythagorean Theorem—and More
Students construct a triangle and find all angle and side measures. They practice dragging the vertices to form certain types of triangles, and then they confirm the Pythagorean Theorem for right triangles. Moreover, they discover the types of triangle that occur when c2 a2 + b2 or when c2 > a2 +...https://education.ti.com/en/activity/detail/the-pythagorean-theoremand-more
Secants and Angles in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle
Secants and Segments in a Circle
This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segments formed by two secants drawn from a common external point to a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-segments-in-a-circle
Remote Interior Angles
Students use the handheld activity and questions to explore remote interior angles.https://education.ti.com/en/activity/detail/remote-interior-angles
Linear Equations, How Can I Tell?
This is a lesson to be used when introducing linear equations. The class is to determine parallel slopes, slope of the line, and slope- intercept form while investigating the graphs.https://education.ti.com/en/activity/detail/linear-equations-how-can-i-tell
Geyser Water Park
This activity deals with the slope-intercept (y=mx+b) formula. It is a good introductory lesson for using the formulas. It also includes setting up a chart and the students have to enter the data into the calculator and graph the results.https://education.ti.com/en/activity/detail/geyser-water-park
Investigation of Similar Rectangles
This activity shows how the ratios of perimeters and the ratios of areas of similar rectangles compare to the similarity ratios.https://education.ti.com/en/activity/detail/investigation-of-similar-rectangles
Getting to Know Your TI-Nspire - A Scavenger Hunt for Students
This activity is a scavenger hunt on the TI-Nspire CX/CX II. It serves as a way for students to explore some of the features of the TI-Nspire CX/CX II handheld.https://education.ti.com/en/activity/detail/getting-to-know-your-nspire--a-scavenger-hunt
Finding Pi
Students discover that pi is the ratio of a circle's circumference to its diameter using manipulatives and the Nspire's data capture feature. This activity can be accomplished individually or in groups of 2 or 3.https://education.ti.com/en/activity/detail/finding-pi
Dinner Party
Students investigate the total cost of a private party at three restaurants and then model the cost of a party at each restaurant with the graph of a linear function.https://education.ti.com/en/activity/detail/dinner-party_1
Quadratic Unit Activity #9: Unit Test Part III
This assessment covers student's finding equations in vertex form of images.https://education.ti.com/en/activity/detail/quadratic-unit-activity-9-unit-test-part-iii
Investigating Parallelograms
The purpose of this activity is to use TI-Nspire to explore the properties of parallelograms. A parallelogram is a quadrilateral with both pairs of opposite sides parallel.https://education.ti.com/en/activity/detail/investigating-parallelograms
Investigating the Angles of a Triangle
The following will find the sum of the interior angles of a triangle and the sum of the remote interior angles of a triangle. Students can then change the type of triangle. The student will see that the sum of the interior angles is always 180 degrees. Also, the student will see that the sum of t...https://education.ti.com/en/activity/detail/investigating-the-angles-of-a-triangle
Investigating Triangles and Congruence
The main purpose for this activity is to explore triangles with pairs of corresponding congruent sides and a congruent nonincluded angle.https://education.ti.com/en/activity/detail/investigating-triangles-and-congruence
Exterior Angle Theorem
In the activity, you will investigate the relationship found between an exterior angle of a triangle and its related remote interior angles.https://education.ti.com/en/activity/detail/exterior-angle-theorem
Factoring Special Cases
Students explore geometric proofs for two factoring rules: a2 + 2ab + b2 = (a + b)2 and x2 – a2 = (x – a)(x + a). Given a set of shapes whose combined areas represent the left-hand expression, they manipulate them to create rectangles whose areas are equal to the right-hand expression.https://education.ti.com/en/activity/detail/factoring-special-cases_1