Segments and Chords in a Circle
This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segment measures formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/segments-and-chords-in-a-circle
The Radian Sector
In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.https://education.ti.com/en/activity/detail/the-radian-sector
Continuity and Differentiability 2
Explore piecewise graphs and determine conditions for continuity and differentiability.https://education.ti.com/en/activity/detail/continuity-and-differentiability-2
Shortest Distance
Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.https://education.ti.com/en/activity/detail/shortest-distance
The sum of the interior angles of regular polygons
The students will construct triangles within regular-sided polygons to determine the sum of the interior angles. They will then, using statistics, create a linear regression to determine the relationship between the number of sides of a regular polygon and the sum of its interior angles.https://education.ti.com/en/activity/detail/the-sum-of-the-interior-angles-of-regular-polygons
Shortest Distances
Students will explore three situations involving distances between points and lines. First, the minimum distance between two points leads to the Triangle Inequality Theorem. Then, the shortest distance from a point to a line is investigated. Finally, students find the smallest total distan...https://education.ti.com/en/activity/detail/shortest-distances
Transformtions and Tessellations
In this activity you will construct a variety of transformations. In Problem #1 you will create a reflection of a pentagon, in Problem #2 a translation of a regular hexagon, in Problem #3 a rotation of a quadrilateral in two ways, in Problem #4 a dilation of a triangle. In each case you will ob...https://education.ti.com/en/activity/detail/transformtions-and-tessellations
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Similar Figures
Observe what happens to ratios of pairs of side of rectangles and triangles.https://education.ti.com/en/activity/detail/similar-figures
Similar Figures - Using Ratios to Discover Properties
Students will explore similar triangles and set up ratios to discover properties of similar triangles.https://education.ti.com/en/activity/detail/similar-figures--using-ratios-to-discover-properties
Secant Angle Investigation
This activity will allow students to discover the relationship between the secant angle and the corresponding central angles.https://education.ti.com/en/activity/detail/secant-angle-investigation
Putting limits on Pi
This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.https://education.ti.com/en/activity/detail/putting-limits-on-pi
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Triangle Midsegment Exploration
The activity has the students investigate the relationship of the midsegment to the third side of the triangle. In addition the students investigate the area of the smaller triangles compared to the larger one and uses the results to solve the "campground" problem. There is a set of follow-up q...https://education.ti.com/en/activity/detail/triangle-midsegment-exploration
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Triangle Midsegments
Investigate the relationships between a triangle and the similar triangle formed by one of the triangle's midsegments.https://education.ti.com/en/activity/detail/triangle-midsegments
Derivative Function
Transition from thinking of the derivative at a point to thinking of the derivative as a function.https://education.ti.com/en/activity/detail/derivative-function
Transformers
Students explore a special subset of the transformations of a square called the symmetry group.https://education.ti.com/en/activity/detail/transformers
Transformations With Lists
Students use list operations to perform reflections, rotations, translations and dilations on a figure, and graph the resulting image using a scatter plot.https://education.ti.com/en/activity/detail/transformations-with-lists_1
Perpendicular Bisector
In this activity, students will explore the perpendicular bisector theorem and discover that if a point is on the perpendicular bisector of a segment, then the point is equidistant from the endpoints. This is an introductory activity, where students will need to know how to change between pages, ...https://education.ti.com/en/activity/detail/perpendicular-bisector_1
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
A Tale of Two Lines
Demonstrate a visual justification for l'Hôpital's Rule.https://education.ti.com/en/activity/detail/a-tale-of-two-lines