Education Technology
< Previous | 4275 - 4300 of 13978 results |  Next >

Alternate Interior Angles

Explore the relationships of the angles formed when two parallel lines are cut by a transversal.
https://education.ti.com/en/activity/detail/alternate-interior-angles

Maximizing a Paper Cone's Volume

The net for a conical paper cup is formed by cutting a sector from a circular piece of paper. What sector angle creates a net that maximizes the cone's volume? In this activity students will build concrete models, measure the dimensions and calculate the volume. Next, students will use a const...
https://education.ti.com/en/activity/detail/maximizing-a-paper-cones-volume

Altitudes of Triangles

Students investigate the intersection of the altitudes of a triangle.
https://education.ti.com/en/activity/detail/altitudes-of-triangles

Mystery Quadrilateral!

This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown mystery quadrilateral that looks like a square. By dragging the vertices of the mystery quadrilateral, students conjecture the true name of the quadrilateral. Students support their ...
https://education.ti.com/en/activity/detail/mystery-quadrilateral

Euler's Method

Dynamic graphical representation of Euler's method that can be plotted one step at a time.
https://education.ti.com/en/activity/detail/eulers-method

Angle and Perpendicular Bisectors in a Triangle

The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...
https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle

Angle Relationships

In this activity, students explore the angle relationships that exist when two lines intersect. They begin by exploring vertical angles and linear pairs, and then expand their study to two lines and a transversal. They will see what relationships hold true when the two lines intersected by a tran...
https://education.ti.com/en/activity/detail/angle-relationships

Angles & Chords in a Circle

This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.
https://education.ti.com/en/activity/detail/angles--chords-in-a-circle

Nested Similar Triangles

Discover the conditions that make triangles similar by moving the sides opposite the common angle in nested triangles.
https://education.ti.com/en/activity/detail/nested-similar-triangles

Angles and Similarity

Experiment with the measures of the angles of similar triangles to determine conditions necessary for two triangles to be similar.
https://education.ti.com/en/activity/detail/angles-and-similarity

Triangle Sides & Angles

Students will explore side and angle relationships in a triangle. First, students will discover where the longest (and shortest) side is located relative to the largest (and smallest) angle. Then, students will explore the Isosceles Triangle Theorem and its converse. Finally, students will determ...
https://education.ti.com/en/activity/detail/triangle-sides--angles

Triangle: Side Lengths and Angle Measures

The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.
https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures

Scale Factor Area Perimeter

Explore the relationship of perimeter and area in similar triangles when the scale factor is changed.
https://education.ti.com/en/activity/detail/scale-factor-area-perimeter

The Geometric Mean

In this activity, students will establish that several triangles are similar and then determine that the altitude to the hypotenuse of a right triangle is the geometric mean between the segments into which it divides the hypotenuse.
https://education.ti.com/en/activity/detail/the-geometric-mean_1

The Hinge Theorems

Students will explore the inequality relationships that arise when some of the triangle congruence conditions are in place but others are not. The SAS Inequality Theorem and the SSS Inequality Theorem are often referred to as the Hinge Theorem and its converse. These two theorems concern inequali...
https://education.ti.com/en/activity/detail/the-hinge-theorems_1

Regular Polygons - Angle Measurements

Students will investigate the number of degrees in each polygon with three through ten sides, then develop a formula for the relationship between the number of sides and the sum of the measures of the degrees of the polygons.
https://education.ti.com/en/activity/detail/regular-polygons--angle-measurements

The Ladder Problem Revisited

In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...
https://education.ti.com/en/activity/detail/the-ladder-problem-revisited

The Lunes of Hippocrates

In this activity the students discover a property of this historical figure.
https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates

Pythagorean Relationships

Investigate the triangles that can be formed using one side of three squares to build the triangle.
https://education.ti.com/en/activity/detail/pythagorean-relationships

The Magic of Central Angles

This activity allows students to investigate the relationship between central angles and the arcs they intercept.
https://education.ti.com/en/activity/detail/the-magic-of-central-angles

Pythagorean Triples

Explore Pythagorean triples by dragging vertices to find whole number Pythagorean triples.
https://education.ti.com/en/activity/detail/pythagorean-triples

The Pirate Problem

The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...
https://education.ti.com/en/activity/detail/the-pirate-problem

The Pythagorean Theorem—and More

Students construct a triangle and find all angle and side measures. They practice dragging the vertices to form certain types of triangles, and then they confirm the Pythagorean Theorem for right triangles. Moreover, they discover the types of triangle that occur when c2 a2 + b2 or when c2 > a2 +...
https://education.ti.com/en/activity/detail/the-pythagorean-theoremand-more

Ratios of Similar Figures

Students explore the ratio of perimeter, area, surface area, and volume of similar figures in two and three dimensional figures.
https://education.ti.com/en/activity/detail/ratios-of-similar-figures_1

The Lunes of Hippocrates

In this activity, students will explore a figure that involves lunes - the area enclosed between arcs of intersecting circles. When lunes are constructed on the sides of a right triangle, an interesting result occurs.
https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates_1