Education Technology
< Previous | 3875 - 3900 of 10298 results |  Next >

Congruent Triangles

This activity is intended to provide students with an opportunity to discover three methods of proving triangles congruent: SSS, SAS, and ASA.
https://education.ti.com/en/activity/detail/congruent-triangles_2

Applications of Similar Figures

Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.
https://education.ti.com/en/activity/detail/applications-of-similar-figures

Angles in Polygons

In this activity, students measure interior angles in convex polygons and find the sum of the angle measures. They make and test a conjecture about the sum of the angle measures in an n-sided polygon. Finally, they measure exterior angles in convex polygons, find their sum, and write a proof for ...
https://education.ti.com/en/activity/detail/angles-in-polygons_1

Congruent Triangles - Conditions that Prove Congruency

Students will investigate what conditions are necessary to prove two triangles are congruent.
https://education.ti.com/en/activity/detail/congruent-triangles--conditions-that-prove-congruency

Medians in a Triangle

Students will study medians and some of their properties. A median of a triangle connects a vertex of the triangle with the midpoint of the opposite side.
https://education.ti.com/en/activity/detail/medians-in-a-triangle

Minimizing Surface Area of a Cylinder Given a Fixed Volume

Students will discover the relationship between radius and height of a cylinder so that surface area of a cylinder can be minimized while maintaining a fixed volume. This is just an introduction to a project that they will begin after this investigation. Once this is completed, they will redesig...
https://education.ti.com/en/activity/detail/minimizing-surface-area-of-a-cylinder-given-a-fixed-volume

Angles in Polygons

This is a self-contained activity that is designed to incorporate the TI-Nspire Navigator system which provides for a paperless activity that can be easily managed during and after the class period. Students will investigate the relationships of the interior and exterior angles in a polygon. T...
https://education.ti.com/en/activity/detail/angles-in-polygons

Logic

This document reviews logical reasoning with problems on compound statements, conditional statements, and algebraic proofs.
https://education.ti.com/en/activity/detail/logic

Addition of Parts

This activity is a self-contained discussion of the topic of segment and angle addition and allows the teacher to focus on the flow of the class rather than explanation. Students will be able to work through this activity easily and reach usable conclusions on their own. Also, examples are prov...
https://education.ti.com/en/activity/detail/addition-of-parts

Euler's Method

Dynamic graphical representation of Euler's method that can be plotted one step at a time.
https://education.ti.com/en/activity/detail/eulers-method

Angles & Chords in a Circle

This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.
https://education.ti.com/en/activity/detail/angles--chords-in-a-circle

The Ladder Problem Revisited

In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...
https://education.ti.com/en/activity/detail/the-ladder-problem-revisited

The Lunes of Hippocrates

In this activity the students discover a property of this historical figure.
https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates

The Pythagorean Theorem—and More

Students construct a triangle and find all angle and side measures. They practice dragging the vertices to form certain types of triangles, and then they confirm the Pythagorean Theorem for right triangles. Moreover, they discover the types of triangle that occur when c2 a2 + b2 or when c2 > a2 +...
https://education.ti.com/en/activity/detail/the-pythagorean-theoremand-more

Tangents to a Circle

Explore properties of tangent lines and how they differ from secant lines.
https://education.ti.com/en/activity/detail/tangents-to-a-circle

Secants and Angles in a Circle

This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.
https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle

Secants and Segments in a Circle

This activity is designed to allow students an opportunity to gain an understanding of the relationship among the segments formed by two secants drawn from a common external point to a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.
https://education.ti.com/en/activity/detail/secants-and-segments-in-a-circle

Rhombi, Kites, and Trapezoids

Students discover properties of the diagonals of rhombi and kites, and the properties of angles in rhombi, kites, and trapezoids.
https://education.ti.com/en/activity/detail/rhombi-kites-and-trapezoids_1