Exploring Asymptotes
In this activity, students will explore asymptotes and singularities, paying particular attention to the connection between the algebraic and graphical representations.https://education.ti.com/en/activity/detail/exploring-asymptotes
Blocking Introduction
This lesson involves investigating the effectiveness of two mosquito sprays in a large tract of land by using two different experimental designs - one randomized design and one randomized block designs.https://education.ti.com/en/activity/detail/blocking-introduction
Binomial Pdf- Eye Color
This lesson involves binomial trials, distributions, and probabilities. Students can create the tns file following the steps in Binomial_Pdf_Create_Eye_Color, or they can use the premade file Binomial_Pdf_Eye_Color.tnshttps://education.ti.com/en/activity/detail/binomial-pdf-eye-color
Exploring Inverse Functions
Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.https://education.ti.com/en/activity/detail/exploring-inverse-functions
Binomial Experiments
Students use the multiplication rule for independent events to find the probability of the first success in the nth trial. Students use their results to derive and test a general formula. Then, students expand on this foundation to derive and test a rule for the probability of x successes in n tr...https://education.ti.com/en/activity/detail/binomial-experiments
Exploring Quadratic Equations
Students will stretch and translate the parabola given by y = x2 and determine the effects on the equation. Students will also explore finding the vertex and zeros of a parabola and relate them to the equation.https://education.ti.com/en/activity/detail/exploring-quadratic-equations
Assessing Normality
In this activity, students will learn four characteristics of a normal curve: the distribution is symmetric and mound-shaped; the mean and median are approximately equal; the distribution meets the 68-95.5-99.7 rule; and the normal probability plot is linear. They will use these to determine if a...https://education.ti.com/en/activity/detail/assessing-normality
Volume by Cross Sections
Students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes.https://education.ti.com/en/activity/detail/volume-by-cross-sections_1
Exponential Growth
The purpose of this exploration is to investigate properties of exponential functions including the relationship between the graphical and algebraic forms of the functions.https://education.ti.com/en/activity/detail/exponential-growth
Difference in Means
This activity involves investigating whether a difference really seems to exist between two sample means.https://education.ti.com/en/activity/detail/difference-in-means
Investigating Correlation
This lesson involves investigating the connection between the scatterplot of bivariate data and the numerical value of the correlation coefficient.https://education.ti.com/en/activity/detail/investigating-correlation
Introduction to the Central Limit Theorem
Students discover the Central Limit Theorem by simulating rolls of two, four, and seven number cubes via the random number generator.https://education.ti.com/en/activity/detail/introduction-to-the-central-limit-theorem_1
Interpreting R -squared
This lesson involves predicting values of a particular variable.https://education.ti.com/en/activity/detail/interpreting-r-squared
The Area Between
Students will find the area between two curves while determining the required amount of concrete needed for a winding pathway and stepping stones.https://education.ti.com/en/activity/detail/the-area-between_1
Slopes of Secant Lines
Collect data about the slope of a secant line and then predict the value of the slope of the tangent line.https://education.ti.com/en/activity/detail/slopes-of-secant-lines
Influencing Regression
This lesson involves a least-squares regression line fit to a set of nine values.https://education.ti.com/en/activity/detail/influencing-regression
Influence and Outliers
In this activity, students will identify outliers that are influential with respect to the least-squares regression line. Students will describe the role of the location of a point relative to the other data in determining whether that point has influence on the least-squares regression line.https://education.ti.com/en/activity/detail/influence-and-outliers
Slope Fields Forever
Dynamically explore a particular solution to a differential equation for different initial conditions and investigate slope fields.https://education.ti.com/en/activity/detail/slope-fields-forever_1
Slope Fields
Use a visual representation of the family of solutions to a differential equation.https://education.ti.com/en/activity/detail/slope-fields
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
Sequences
Graphically evaluate the limit of a sequence.https://education.ti.com/en/activity/detail/sequences
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Sign of the Derivative
Make a connection between the sign of the derivative and the increasing or decreasing nature of the graph.https://education.ti.com/en/activity/detail/sign-of-the-derivative
Margin of Error and Sample Size
This activity investigates the margin of error for a confidence interval and the relationship between sample size and the margin of error.https://education.ti.com/en/activity/detail/margin-of-error-and-sample-size
Solids Of Revolution Between Two Curves
Students will investigate 3D visualizations of volumes created by rotating two functions about the x-or y-axis. They will understand the concept and reason for the volume formula in order to be prepared for generalizations. Students will solve the definite integral by hand using the fundamental t...https://education.ti.com/en/activity/detail/solids-of-revolution-between-two-curves