MacLaurin Polynomials
Students will use TI-Nspire technology to explore MacLaurin polynomials. They will develop polynomials that approximate very special functions.https://education.ti.com/en/activity/detail/maclaurin-polynomials_1
Confidence Levels for Means
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. Students will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels-for-means
Local Linearity
Visualize the idea of derivative as local slope.https://education.ti.com/en/activity/detail/local-linearity
Confidence Levels
Students will interpret a confidence level as the average success rate of the process used to produce an interval intended to contain the true mean of the population. They will recognize that as the confidence level increases, on average, the confidence interval increases in width.https://education.ti.com/en/activity/detail/confidence-levels
Confidence Intervals for Proportions
This lesson involves the concept of confidence intervals as a tool to make statements about a population proportion based on a given sample.https://education.ti.com/en/activity/detail/confidence-intervals-for-proportions_1
Confidence Intervals for Means
This activity investigates generating a confidence interval for the mean of a random sample of size 100 from an unknown population.https://education.ti.com/en/activity/detail/confidence-intervals-for-means_1
Confidence Intervals for 2 Sample Proportions
Do senior citizens and college students have different memories about high school? The activity Confidence Intervals: 2-Sample Proportions involves investigating random samples from two populations from a large Midwestern city with respect to the question: "When you were in high school, did you h...https://education.ti.com/en/activity/detail/confidence-intervals-for-2-sample-proportions
Intersecting the Solutions
In this teacher-led activity, students will learn to solve systems of equations graphically. They will learn the relationship between the algebraic and graphical solutions and create equations that draw upon this connection.https://education.ti.com/en/activity/detail/intersecting-the-solutions
Move Those Chains
In this activity, students will explore the Chain Rule. Students are asked to make a conjecture of the derivative of f(x) = (2x + 1)2 based on the Power Rule. They are then asked to graph their derivative function and compare it to the graph of f´(x). They will then examine "true" statements abou...https://education.ti.com/en/activity/detail/move-those-chains
How Many Solutions?
Students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions
Half-Life
Students will explore exponential decay through an experiment and use the gathered data to generate an exponential regression equation. Students will then repeat the process with a data set and forecast future results.https://education.ti.com/en/activity/detail/halflife
Areas In Intervals
Students use several methods to determine the probability of a given normally distributed value being in a given interval. First, they use the Integral tool to find areas under the curve and to the left of given values. Students continue the activity to find probabilities for which the correspond...https://education.ti.com/en/activity/detail/areas-in-intervals
Box Plots Introduction
This lesson involves representing distributions of data using box plots. The emphasis is on helping students understand the relationship between individual data values and the five-number summary. Students will move data within a dot plot and observe the changes within the corresponding box plot...https://education.ti.com/en/activity/detail/box-plots-introduction
Exploring Complex Roots
In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph. Open the file CollegeAlg_ComplexRoots.tns on your TI-Nspire handheld device to work through the activity.https://education.ti.com/en/activity/detail/exploring-complex-roots
Binomial Pdf- Eye Color
This lesson involves binomial trials, distributions, and probabilities. Students can create the tns file following the steps in Binomial_Pdf_Create_Eye_Color, or they can use the premade file Binomial_Pdf_Eye_Color.tnshttps://education.ti.com/en/activity/detail/binomial-pdf-eye-color
Rectangle and Trapezoid Approximations to Definite Integrals
Use visual representation of area estimation methods in order to determine which is most accurate.https://education.ti.com/en/activity/detail/trapezoid-and-midpoint-rules
Assessing Normality
In this activity, students will learn four characteristics of a normal curve: the distribution is symmetric and mound-shaped; the mean and median are approximately equal; the distribution meets the 68-95.5-99.7 rule; and the normal probability plot is linear. They will use these to determine if a...https://education.ti.com/en/activity/detail/assessing-normality
Volume by Cross Sections
Students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes.https://education.ti.com/en/activity/detail/volume-by-cross-sections_1
Difference Between Two Proportions
Students use confidence intervals to estimate the difference of two population proportions. First they find the intervals by calculating the critical value and the margin of error. Then, they use the 2-propZInterval command. Students find confidence intervals for differences in proportions in rea...https://education.ti.com/en/activity/detail/difference-between-two-proportions_1
Difference in Means
This activity involves investigating whether a difference really seems to exist between two sample means.https://education.ti.com/en/activity/detail/difference-in-means
Exponentialis ~ Logarithmus
In this story-style activity, students work through a step-by-step review of solving exponential equations using logarithms. At first, they are guided through process of using logarithms and checking them, with the help of 'Terry Plotter the mathemagician'. Then, students review identities and pr...https://education.ti.com/en/activity/detail/exponentialis--logarithmus
The Area Between
Students will find the area between two curves while determining the required amount of concrete needed for a winding pathway and stepping stones.https://education.ti.com/en/activity/detail/the-area-between_1
Influencing Regression
This lesson involves a least-squares regression line fit to a set of nine values.https://education.ti.com/en/activity/detail/influencing-regression
Influence and Outliers
In this activity, students will identify outliers that are influential with respect to the least-squares regression line. Students will describe the role of the location of a point relative to the other data in determining whether that point has influence on the least-squares regression line.https://education.ti.com/en/activity/detail/influence-and-outliers
Is it Rare?
Students use the Poisson distribution to determine the probabilities for various numbers of hurricanes hitting the United States in a given year. Students will also explore the graph of the Poisson distribution and how it behaves.https://education.ti.com/en/activity/detail/is-it-rare_1