Education Technology
< Previous | 3025 - 3050 of 8851 results |  Next >

Convergence of Taylor Series

A Taylor Series for a function becomes the function as the number of terms increases towards infinity.
https://education.ti.com/en/activity/detail/convergence-of-taylor-series

Tesselations

In this activity students will explore what causes some regular polygons to tesselate. They will explore sketches of regular polygons, measure the interior angles, and test to see whether the shapes tesselate.
https://education.ti.com/en/activity/detail/tesselations

The Radian Sector

In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.
https://education.ti.com/en/activity/detail/the-radian-sector

Continuity and Differentiability 2

Explore piecewise graphs and determine conditions for continuity and differentiability.
https://education.ti.com/en/activity/detail/continuity-and-differentiability-2

Shortest Distance

Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.
https://education.ti.com/en/activity/detail/shortest-distance

Side Length, Perimeter, and Area of a Rectangle

Explore the effects of changing base (or height) of a rectangle on it's perimeter and area.
https://education.ti.com/en/activity/detail/side-length-perimeter-and-area-of-a-rectangle

Side-Side-Angle: The Ambiguous Case

Experiment with segment lengths and angle measures.
https://education.ti.com/en/activity/detail/sidesideangle-the-ambiguous-case

Concavity

Examine the relationship between the first and second derivative and shape of a function.
https://education.ti.com/en/activity/detail/concavity

Putting limits on Pi

This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.
https://education.ti.com/en/activity/detail/putting-limits-on-pi

Proving the Pythagorean Theorem - President Garfield's Proof

This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.
https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof

Derivative Grapher

Visualize the relationship between the graph of a function and the graph of its derivative function.
https://education.ti.com/en/activity/detail/derivative-grapher

Patterns in Area - Impact of Changes in Length and Width

Students will explore what happens to the area of a rectangle if you double the length and width.
https://education.ti.com/en/activity/detail/patterns-in-area--impact-of-changes-in-length-and-width

Definite Integral

Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.
https://education.ti.com/en/activity/detail/definite-integral

The Tale of Two Tangents

This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.
https://education.ti.com/en/activity/detail/the-tale-of-two-tangents

Average Value

Examine areas as integrals and as rectangles for given functions.
https://education.ti.com/en/activity/detail/average-value

Transformations: Reflections

Explore what a reflection does to an object.
https://education.ti.com/en/activity/detail/transformations-reflections

Area Function Problems

Understand the relationship between the area under a derivative curve and the antiderivative function.
https://education.ti.com/en/activity/detail/area-function-problems

"Picking" Your Way Through Area Problems

Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.
https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems

Dog Run

This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.
https://education.ti.com/en/activity/detail/dog-run

Properties of Parallelograms

Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.
https://education.ti.com/en/activity/detail/properties-of-parallelograms_7

Exploring Cavalieri's Principle

Students will explore Cavalieri's Principle for cross sectional area and volume.
https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1

Cyclic Quadrilaterals

Explore the relationship between chords of a circle and their perpendicular bisectors.
https://education.ti.com/en/activity/detail/cyclic-quadrilaterals

Cyclic Quadrilaterals

Students will explore cyclic quadrilaterals and their properties.
https://education.ti.com/en/activity/detail/cyclic-quadrilaterals_2

Integration By Substitution

Students explore methods for computing integrals of functions that are not in one of the standard forms.
https://education.ti.com/en/activity/detail/integration-by-substitution_1

Determining Angle Measure

Determine the measure of an angle and if larger angles have longer "sides."
https://education.ti.com/en/activity/detail/determining-angle-measure