Convergence of Taylor Series
A Taylor Series for a function becomes the function as the number of terms increases towards infinity.https://education.ti.com/en/activity/detail/convergence-of-taylor-series
Tesselations
In this activity students will explore what causes some regular polygons to tesselate. They will explore sketches of regular polygons, measure the interior angles, and test to see whether the shapes tesselate.https://education.ti.com/en/activity/detail/tesselations
The Radian Sector
In this activity, students will explore properties of sectors. Students will derive the formula for the arc length of a sector and the area of a sector.https://education.ti.com/en/activity/detail/the-radian-sector
Continuity and Differentiability 2
Explore piecewise graphs and determine conditions for continuity and differentiability.https://education.ti.com/en/activity/detail/continuity-and-differentiability-2
Shortest Distance
Students will discover, through exploration, that the shortest distance from a point on a line to the origin is a measure of a perpendicular line segment. You will investigate this minimization problem and support the analytical explanations with interactive explorations.https://education.ti.com/en/activity/detail/shortest-distance
Side Length, Perimeter, and Area of a Rectangle
Explore the effects of changing base (or height) of a rectangle on it's perimeter and area.https://education.ti.com/en/activity/detail/side-length-perimeter-and-area-of-a-rectangle
Side-Side-Angle: The Ambiguous Case
Experiment with segment lengths and angle measures.https://education.ti.com/en/activity/detail/sidesideangle-the-ambiguous-case
Concavity
Examine the relationship between the first and second derivative and shape of a function.https://education.ti.com/en/activity/detail/concavity
Putting limits on Pi
This activity has the students calculate the perimeter of inscribed and circumscribed regular polygons about a circle and then use the calculated values to determine pi.https://education.ti.com/en/activity/detail/putting-limits-on-pi
Proving the Pythagorean Theorem - President Garfield's Proof
This is the same proof that is found on the TI-Exchange website for the 84 plus, but I modified it for the Nspire handhelds.https://education.ti.com/en/activity/detail/proving-the-pythagorean-theorem--president-garfields-proof
Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its derivative function.https://education.ti.com/en/activity/detail/derivative-grapher
Patterns in Area - Impact of Changes in Length and Width
Students will explore what happens to the area of a rectangle if you double the length and width.https://education.ti.com/en/activity/detail/patterns-in-area--impact-of-changes-in-length-and-width
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
The Tale of Two Tangents
This activity allows students to investigate the relationship between the angle formed by two tangents to a circle and the arcs they intercept.https://education.ti.com/en/activity/detail/the-tale-of-two-tangents
Average Value
Examine areas as integrals and as rectangles for given functions.https://education.ti.com/en/activity/detail/average-value
Transformations: Reflections
Explore what a reflection does to an object.https://education.ti.com/en/activity/detail/transformations-reflections
Area Function Problems
Understand the relationship between the area under a derivative curve and the antiderivative function.https://education.ti.com/en/activity/detail/area-function-problems
"Picking" Your Way Through Area Problems
Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems
Dog Run
This activity allows students to investigate the maximum area of a rectangle with a fixed perimeter.https://education.ti.com/en/activity/detail/dog-run
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Exploring Cavalieri's Principle
Students will explore Cavalieri's Principle for cross sectional area and volume.https://education.ti.com/en/activity/detail/exploring-cavalieris-principle_1
Cyclic Quadrilaterals
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals
Cyclic Quadrilaterals
Students will explore cyclic quadrilaterals and their properties.https://education.ti.com/en/activity/detail/cyclic-quadrilaterals_2
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Determining Angle Measure
Determine the measure of an angle and if larger angles have longer "sides."https://education.ti.com/en/activity/detail/determining-angle-measure