Exploring the Equation of a Circle
Explore right triangles and the Pythagorean Theorem to develop the equation of a circle.https://education.ti.com/en/activity/detail/exploring-the-equation-of-a-circle
Exploring the Geometric Means of a Right Triangle - When the Altitude to the Hypotenuse Is Drawn
Students will explore the concept of geometric mean and solve right triangle problems using geometric mean proportions. A TI-Nspire activity demonstrates interactively the geometric mean relationship, and an activity sheet applies the relationship to solve triangle problem. Most discussions of g...https://education.ti.com/en/activity/detail/exploring-the-geometric-means-of-a-right-triangle--when-the-altitude-to-the-hypotenuse-is-drawn
Exploring Parallel Lines and Angles
Students will explore the relationships between pairs of angles formed when two parallel lines are cut by a transversal. They will identify special pairs of angles, measure all the angles formed by two parallel lines cut by a transversal, and then look for patterns among the measures.https://education.ti.com/en/activity/detail/exploring-parallel-lines-and-angles
Triangle Sum Theorem
Investigate the special relationship of the angles of a triangle.https://education.ti.com/en/activity/detail/triangle-sum-theorem
Calculator City
Students help Calculator City determine where to place the statue of Mr. Tex Instruments by finding the circumcenter and incenter of a triangle.https://education.ti.com/en/activity/detail/calculator-city
Cell Phone Towers
In this activity students explore the locus of a point that is located twice as far from a given point A as it is from given point B. The locus is Apollonius circle. Students discover that the locus is a circle and then prove it. The key property: If a ray bisects an angle of a triangle, then it ...https://education.ti.com/en/activity/detail/cell-phone-towers
Chords of a Circle
Explore the relationship between chords of a circle and their perpendicular bisectors.https://education.ti.com/en/activity/detail/chords-of-a-circle
Circle Geometry: Angles Formed by Intersecting Chords
This activity is intended to teach students about the rule associated with the angles formed by two chords intersecting within the circle and the intercepted arcs.https://education.ti.com/en/activity/detail/circle-geometry-angles-formed-by-intersecting-chords
Area of a Triangle Between Parallel Lines
This is an investigation of what happens to the area of a triangle when one vertex moves along a line parallel to the side opposite the vertex.https://education.ti.com/en/activity/detail/area-of-a-triangle-between-parallel-lines
Balancing Act
Students will explore the centriod of a triangle. They will discover that it is the center of gravity. They will balance a cardboard triangle on the end of a pencil. Then they will construct the medians with folds and pencil. After students have seen that the center of gravity is the point ...https://education.ti.com/en/activity/detail/balancing-act
Circle Geometry: Property of the Segments of Two Chords Intersecting within a Circle
Students will be able to discover the property of two chords segments intersecting within a circle. They will discover the rule about the segments geometrically, numerically, and graphically. Lesson will touch on line of best fit to explore the relationship between the segments of the two chords.https://education.ti.com/en/activity/detail/circle-geometry-property-of-the-segments-of-two-chords-intersecting-within-a-circle
Constructing a Pentagon, An Alternative Method
Use the TN-Nspire (OS 2.0) to construct a regular pentagon using lines, rays, line segments, and circles of various diameters. The characteristics of a regular pentagon are discussed and used to verify the construction meets the criteria of all sides being equal, and all angles being equal. The ...https://education.ti.com/en/activity/detail/constructing-a-pentagon-an-alternative-method
Exterior Angle Sum Theorem
This activity illustrates the exterior angle sum theorem by taking regular polygons with an exterior angle constructed, one at each vertex, and pulling all the vertices together to show that all exterior angles form a circle.https://education.ti.com/en/activity/detail/exterior-angle-sum-theorem
Circles - Angles and Arcs
In this activity, students will investigate inscribed angles, central angles and intercepted arcs relationships in circles.https://education.ti.com/en/activity/detail/circles--angles-and-arcs
Applications of Similar Figures
Students will identify corresponding parts of figures and use the definition of similar figures to solve real-world applications involving rectangles and triangles.https://education.ti.com/en/activity/detail/applications-of-similar-figures
Arcs and Central Angles of Circles
Students discover the central angles of circles plus minor and major arcs.https://education.ti.com/en/activity/detail/arcs-and-central-angles-of-circles
Minimizing Surface Area of a Cylinder Given a Fixed Volume
Students will discover the relationship between radius and height of a cylinder so that surface area of a cylinder can be minimized while maintaining a fixed volume. This is just an introduction to a project that they will begin after this investigation. Once this is completed, they will redesig...https://education.ti.com/en/activity/detail/minimizing-surface-area-of-a-cylinder-given-a-fixed-volume
Maximizing a Paper Cone's Volume
The net for a conical paper cup is formed by cutting a sector from a circular piece of paper. What sector angle creates a net that maximizes the cone's volume? In this activity students will build concrete models, measure the dimensions and calculate the volume. Next, students will use a const...https://education.ti.com/en/activity/detail/maximizing-a-paper-cones-volume
Angle and Perpendicular Bisectors in a Triangle
The students will examine where the perpendicular bisectors and angle bisectors of a triangle intersect. The students will circumscribe a circle around the triangle and will inscribe a circle within the triangle. There is a page at the end of each activity with the circle constructed if the s...https://education.ti.com/en/activity/detail/angle-and-perpendicular-bisectors-in-a-triangle
Angles & Chords in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by intersecting chords in a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/angles--chords-in-a-circle
Triangle: Side Lengths and Angle Measures
The main purpose of this activity is to allow students to use TI-Nspire or TI-Nspire CAS to explore and decide which sides and angles of a triangle are the smallest and which are the largest.https://education.ti.com/en/activity/detail/triangle-side-lengths-and-angle-measures
The Pirate Problem
The classic geometry problem developed in 1947 by George Gamow comes alive with the interactive platform of TI-Nspire. Will the treasure still be found after the palm tree in the treasure map disappears? What begins with inductive reasoning ends with a formal proof. This lesson, easily adapte...https://education.ti.com/en/activity/detail/the-pirate-problem
The Lunes of Hippocrates
In this activity, students will explore a figure that involves lunes - the area enclosed between arcs of intersecting circles. When lunes are constructed on the sides of a right triangle, an interesting result occurs.https://education.ti.com/en/activity/detail/the-lunes-of-hippocrates_1
Taxicab Geometry
In this activity, students begin a study of taxicab geometry by discovering the taxicab distance formula. They then use the definition of radius to draw a taxicab circle and make comparisons between a circle in Euclidean geometry and a circle in taxicab geometry. Lastly, they construct taxicab pe...https://education.ti.com/en/activity/detail/taxicab-geometry
Secants and Angles in a Circle
This activity is designed to allow students to gain an understanding of the relationship between the arcs and angles formed by secants drawn from a common external point outside a circle. It includes an interactive geometry page, some circle problems, and a Euclidean proof.https://education.ti.com/en/activity/detail/secants-and-angles-in-a-circle