Education Technology
< Previous | 275 - 300 of 2715 results |  Next >

Properties of Quadrilaterals

The students will investigate the properties of a parallelogram, rhombus, rectangle, square, kite, trapezoid, and isosceles trapezoid by using the measurement tools of the TI-Npsire. The students will record their results on the chart. The time for the activity will vary based on the ability of...
https://education.ti.com/en/activity/detail/properties-of-quadrilaterals

Properties of Trapezoids and Kites

Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...
https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites

Inflection Points

Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.
https://education.ti.com/en/activity/detail/inflection-points

Points, Lines, and Distance

Investigate the distance between two points, a point and a line, and two lines.
https://education.ti.com/en/activity/detail/points-lines-and-distance

Discovering the Circumcenter and Centroid of a Triangle

The students will find the circumcenter by constructing perpendicular bisectors of the sides of a triangle. They will also find the centroid by constructing the medians of a triangle and discover that the centroid is 2/3 of the distance from each vertex along each median.
https://education.ti.com/en/activity/detail/discovering-the-circumcenter-and-centroid-of-a-triangle

Points, Lines, and Planes

Explore the relationships between points, lines, and planes.
https://education.ti.com/en/activity/detail/points-lines-and-planes

Points of Concurrency in Triangles

In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.
https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles

Limits

Students will investigate finding the value of limits using graphical and numerical methods. Students will also learn that a limit can exist at points where there is a hole or removable discontinuity. The concept of left and right-sided limits will also be explored as well as some situations in w...
https://education.ti.com/en/activity/detail/limits

Exploring the Black Box of Quadrilaterals

The exploration will begin with students dragging the quadrilateral given to them about the screen. Initially, they will be asked to simply identify the quadrilateral's type by sight. This will require simply a visual recognition of the quadrilaterals parallelogram, rectangle, square, rhombus, ...
https://education.ti.com/en/activity/detail/exploring-the-black-box-of-quadrilaterals

Exploring the Geometric Means of a Right Triangle - When the Altitude to the Hypotenuse Is Drawn

Students will explore the concept of geometric mean and solve right triangle problems using geometric mean proportions. A TI-Nspire activity demonstrates interactively the geometric mean relationship, and an activity sheet applies the relationship to solve triangle problem. Most discussions of g...
https://education.ti.com/en/activity/detail/exploring-the-geometric-means-of-a-right-triangle--when-the-altitude-to-the-hypotenuse-is-drawn

Exploring Midpoints

This is a quick activity to help students see the relationship of the midpoint of a segment.
https://education.ti.com/en/activity/detail/exploring-midpoints

Cell Phone Towers

In this activity students explore the locus of a point that is located twice as far from a given point A as it is from given point B. The locus is Apollonius circle. Students discover that the locus is a circle and then prove it. The key property: If a ray bisects an angle of a triangle, then it ...
https://education.ti.com/en/activity/detail/cell-phone-towers

Balancing Act

Students will explore the centriod of a triangle. They will discover that it is the center of gravity. They will balance a cardboard triangle on the end of a pencil. Then they will construct the medians with folds and pencil. After students have seen that the center of gravity is the point ...
https://education.ti.com/en/activity/detail/balancing-act

Balancing Point

In this activity, students will explore the median and the centroid of a triangle. Students will discover that the medians of a triangle are concurrent. The point of concurrency is the centroid. Students should discover that the center of mass and the centroid are the same for a triangle.
https://education.ti.com/en/activity/detail/balancing-point

Limits of Functions

Investigate limits of functions at a point numerically.
https://education.ti.com/en/activity/detail/limits-of-functions

Building 3-D Initials with a Vanishing Point

Students will use a vanishing point for a one point perspective drawing of an initial of their choice.
https://education.ti.com/en/activity/detail/building-3d-initials-with-a-vanishing-point

First Derivative Test

Visualize the connections between the first derivative of a function, critical points, and local extrema.
https://education.ti.com/en/activity/detail/first-derivative-test

Angle-Side-Side Exploration

Does knowing two sides and a non-included angle of a triangle guarantee it is a unique triangle? This activity will allow students to discover the answer by moving a point on a triangle to determine if another triangle given the same sides and non-included angle is possible.
https://education.ti.com/en/activity/detail/anglesideside-exploration

Congruent or Not?

In this activity, students will investigate whether AAA, SAS, ASA, or SSA relationship guarantee that two triangles are congruent or not. This is an exploratory activity where students will need to know how to change between pages, grab and move points, and measure lengths.
https://education.ti.com/en/activity/detail/congruent-or-not_1

Medians in a Triangle

Students will study medians and some of their properties. A median of a triangle connects a vertex of the triangle with the midpoint of the opposite side.
https://education.ti.com/en/activity/detail/medians-in-a-triangle

Midpoints in the Coordinate Plane

Beginning with horizontal or vertical segments, students will show the coordinates of the endpoints and make a conjecture about the coordinates of the midpoint.
https://education.ti.com/en/activity/detail/midpoints-in-the-coordinate-plane

A Sprinkler System Activity for the TI-Nspire TouchPad

...le patterns. The students learn to appreciate the ART of Math in the designs created with the Nspire TouchPad. The students gain practice in placing points, creating a regular polygon (rectangle), making shapes (circles, arcs), and hiding the same. The student analyzes the resulting shape for are...
https://education.ti.com/en/activity/detail/a-sprinkler-system-activity-for-the-tinspire-touchpad

Addition of Parts

This activity is a self-contained discussion of the topic of segment and angle addition and allows the teacher to focus on the flow of the class rather than explanation. Students will be able to work through this activity easily and reach usable conclusions on their own. Also, examples are prov...
https://education.ti.com/en/activity/detail/addition-of-parts

The Flag Problem

Students explore the area of a triangle with the base being one of the legs of a right angled trapezoid, and an opposite vertex being a point on the other leg of the trapezoid.
https://education.ti.com/en/activity/detail/the-flag-problem

The Ladder Problem Revisited

In this activity students explore the locus of mid-point of the hypotenuse of a fixed length geometrically and algebraically and discover that the median a right triangle is equal to half the length of the hypotenuse. Students then prove this property. The problem: A ladder leans upright against ...
https://education.ti.com/en/activity/detail/the-ladder-problem-revisited