Proving Angles Congruent
In this activity students will be introduced to proofs, including 2-column proofs, paragraph proofs and flow-proofs. They will also look at different diagrams to decide what the diagram is telling them and what they can infere. They will also look at complementary, supplementary, adjacent and v...https://education.ti.com/en/activity/detail/proving-angles-congruent_1
Paths of Rectangles
This exploration for preservice teachers, looks at how the lengths of the sides of rectangles with equal areas are related. The rectangles are constructed so that one vertex is at the origin. The path of the opposite vertex is an example of indirect variation and demonstrates a connection between...https://education.ti.com/en/activity/detail/paths-of-rectangles
Perpendicular Bisector
In this activity, students will explore the perpendicular bisector theorem and discover that if a point is on the perpendicular bisector of a segment, then the point is equidistant from the endpoints. This is an introductory activity, where students will need to know how to change between pages, ...https://education.ti.com/en/activity/detail/perpendicular-bisector_1
Definite Integral
Make visual connections between the definite integral of a function and the signed area between the function and the x-axis.https://education.ti.com/en/activity/detail/definite-integral
Derivatives of Trigonometric Functions
Students will use the graph of the sine function to estimate the graph of the cosine function. They will do this by inspecting the slope of a tangent to the graph of the sine function at several points and using this information to construct a scatter plot for the derivative of the sine. Students...https://education.ti.com/en/activity/detail/derivatives-of-trigonometric-functions
3D Parametric
In this activity, students will review the concepts of parametric and polar equations. By using the 3D graphing capabilities of the TI-Nspire handheld, students will be able to extend these ideas to the area of solids of revolution, arc length and kinematics.https://education.ti.com/en/activity/detail/3d-parametric
Transformations: Reflections and Rotations
This activity is designed to be used in a middle-school or high-school geometry classroom. An understanding of labeling points in the coordinate plane is necessary. This is an exploration using reflections to move a polygon about the coordinate plane.https://education.ti.com/en/activity/detail/transformations--reflections-and-rotations
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations
Transformations: Rotations
Explore clockwise and counterclockwise rotations to discover the properties of the pre-image and image of a triangle.https://education.ti.com/en/activity/detail/transformations-rotations_1
Parallel Lines and Angles
Students will use TI-Nspire technology to investigate the relationships between two corresponding angles and between two alternate interior angles. At the end of this activity, students should be able to discover that if two parallel lines are cut by a transversal the pairs of corresponding angle...https://education.ti.com/en/activity/detail/parallel-lines-and-angles
Parallel Lines and the Transversals that Cross Them!
Students will explore the relationships between angles formed by parallel lines crossed by transversals. While there are other activities that may address similar topics, the questions presented to students in this activity bring a fresh perspective to student discovery.https://education.ti.com/en/activity/detail/parallel-lines-and-the-transversals-that-cross-them
Perspective Drawings
In this activity, students will draw figures in one- and two-point perspective, comparing and contrasting the two types of drawings. They then create an isometric drawing and compare it to the other drawings.https://education.ti.com/en/activity/detail/perspective-drawings
"Picking" Your Way Through Area Problems
Students will discover Pick's Theorem by finding the relationship between area and the number of boundary points and interior points of a lattice polygon.https://education.ti.com/en/activity/detail/picking-your-way-through-area-problems
Applications of Critical Points
Students will examine the relationship between critical points and local extrema through real-world examples. Students will zoom in on the critical points to see if the curve becomes linear to determine if the function is differentiable at the critical point. They will then discover that the sign...https://education.ti.com/en/activity/detail/applications-of-critical-points
Equations of a Circle
In this activity, the students can be partnered up and will discover how the equation of a circle changes when you move the circle around the coordinate plane.https://education.ti.com/en/activity/detail/equations-of-a-circle
Properties of Parallelograms
Students will manipulate parallelograms to discover the relationships between the sides, angles, and diagonals of parallelograms.https://education.ti.com/en/activity/detail/properties-of-parallelograms_7
Equations of Circles
This activity will enable the student to discover BOTH equations of a circle. The Nspire activity will show three different interactive circles: the first with only the radius able to be manipulated, the second with only the center and the third with both. While the student works with both the ...https://education.ti.com/en/activity/detail/equations-of-circles
Discovering the Triangle Inequality Theorem with the TI-Nspire
Students progress through a series of investigations regarding the lengths of the sides of a triangle. This activity, for discovering the Triangle Inequality Theorem, can be used as either a teacher demonstration or as a classroom activity.https://education.ti.com/en/activity/detail/discovering-the-triangle-inequality-theorem-with-the-tinspire
Creating Perpendicular Bisectors
Construct the perpendicular bisector of a line segment in several different ways and consider the role of circles in the construction.https://education.ti.com/en/activity/detail/creating-perpendicular-bisectors
Properties of Trapezoids and Kites
Students investigate the properties of trapezoids, isosceles trapezoids, and kites by measuring sides and angles in the figures and by constructing and measuring the diagonals of the figures. By dragging vertices of each figure, they can make and test conjectures by seeing which properties hold t...https://education.ti.com/en/activity/detail/properties-of-trapezoids-and-kites
Integration By Substitution
Students explore methods for computing integrals of functions that are not in one of the standard forms.https://education.ti.com/en/activity/detail/integration-by-substitution_1
Diagonal Classification
This activity could be used as an assessment after a unit on special quadrilaterals. Students are given an unknown quadrilateral constructed with a given diagonal property. By dragging the vertices of the quadrilateral, students conjecture as to the names of the quadrilaterals that can be constru...https://education.ti.com/en/activity/detail/diagonal-classification
Inflection Points
Students investigate points of inflection on a function and its first and second derivatives, and discover how they relate to each other.https://education.ti.com/en/activity/detail/inflection-points
Exploring Circle Equations
Students explore the equation of a circle. They will make the connection with the coordinates of the center of the circle and length of the radius to the corresponding parts of the equation. Then, students apply what they have learned to find the equation of the circles in several circular designs.https://education.ti.com/en/activity/detail/exploring-circle-equations_1
Points of Concurrency in Triangles
In this activity, students will use their Nspire handhelds to discover the different points of concurrencies in triangles. The students will take advantage of the dynamic capabilities to discover the circumcenter, incenter, and centroid of triangles.https://education.ti.com/en/activity/detail/points-of-concurrency-in-triangles