Transformations in the Coordinate Plane
Students will apply transformations and use symmetry to analyze mathematical situations. Also, they will represent and analyze mathematical situations and structures using algebraic symbols.https://education.ti.com/en/activity/detail/transformations-in-the-coordinate-plane
Investigating Laws of Exponents
Represent and analyze mathematical situations and structures using algebraic symbols.https://education.ti.com/en/activity/detail/investigating-laws-of-exponents
Investigating the Parabola in Vertex Form (y = ax2 + bx + c)
In this activity, students investigate the standard form of the quadratic function, y = ax2 + bx + c. They investigate the changes on the graph of a quadratic equation that result from changes in A, B, and C. They also locate the vertex of a parabola when its quadratic equation is expressed in st...https://education.ti.com/en/activity/detail/investigating-the-parabola-in-vertex-form-y--axsup2sup--bx--c
Inverses of Functions
Students explore three ways to find the inverse of a function. First, students graph two scatter plots and find the line of reflection. Then, they will graph a line and use the x- and y-intercepts to create the graph of the inverse.https://education.ti.com/en/activity/detail/inverses-of-functions_1
Writing Equations of Parabolas in Vertex Form
Students use their knowledge of the vertex form of a quadratic equation to graph parabolas, given a specific move to make.https://education.ti.com/en/activity/detail/writing-equations-of-parabolas-in-vertex-form
Writing linear equations to form shapes
Students use their knowledge about writing linear equations to graph lines that form a given shape.https://education.ti.com/en/activity/detail/writing-linear-equations-to-form-shapes
Just Move It - IB
In this activity for the TI-84 family, the movements of the parent functions f(x)= x2 and f(x)= x3 will be explored.https://education.ti.com/en/activity/detail/just-move-it_84_ib
It's a Radical, Rational Universe!
Students explore values and optimization of rational and radical functions in real contexts by graphing and using spreadsheets.https://education.ti.com/en/activity/detail/its-a-radical-rational-universe_1
Lines, Models, CBR - Let's Tie Them Together (Electronic Format Only)
In this activity, students use a motion detector to collect "linear" motion data and examine the relationship between a physical action and a mathematical and/or graphic model of that action. The students will use the "eyeball" method to find the mathematical model.https://education.ti.com/en/activity/detail/lines-models-cbr--lets-tie-them-together-electronic-format-only
Lines, Models, CBR - Let's Tie Them Together
In this activity, students use a motion detector to create the data set and examine the relationship between a physical action and a mathematical and/or graphic model of that action.https://education.ti.com/en/activity/detail/lines-models-cbr--lets-tie-them-together
Finding Extraneous Solutions
In this activity, students will graphically solve a radical equation. They are given each step of solving the equation. For each step students are to graph each side of the equation as a separate function and find the intersection. Students will determine in which step the extraneous solution app...https://education.ti.com/en/activity/detail/finding-extraneous-solutions
Introducing the Parabola
Students will understand patterns, relations, and functions.https://education.ti.com/en/activity/detail/introducing-the-parabola
Wrapping It All Up
Students recognize the effects of changes in parameters on the graphs of linear, quadratic, and exponential functions.https://education.ti.com/en/activity/detail/wrapping-it-all-up
You're So Dense - TI-83
Students investigate the relationship between density of an object, its mass and its volume. They use mass and volume measurements to determine the density of pennies. They compare the density of pre-1983 and post-1984 pennies.https://education.ti.com/en/activity/detail/youre-so-dense--ti83
Exploring Sinusoidal Functions - 84
Students systematically explore the effect of the coefficients on the graph of sine or cosine functions.https://education.ti.com/en/activity/detail/getting-triggy-with-it
Generating Recursive Sequences to Explore Exponential Patterns
Students will understand patterns, relations, and functions and use mathematical models to represent and understand quantitative relationshipshttps://education.ti.com/en/activity/detail/generating-recursive-sequences-to-explore-exponential-patterns
Getting Started with Conic Graphing App
The Conic Graphing Application provides enhanced conics functions to the already powerful TI-83 Plus and TI-84 Plus. Graph or trace circles, ellipses, hyperbolas, and parabolas and solve for the conic's characteristics. Present equations in function, parametric, or polar form.https://education.ti.com/en/activity/detail/getting-started-with-conic-graphing-app
Generating Recursive Sequences to Explore Linearity
Students will understand patterns, relations, and functions. They will also use mathematical models to represent and understand quantitative relationships.https://education.ti.com/en/activity/detail/generating-recursive-sequences-to-explore-linearity
What's My Line?
This activity focuses on strengthening student understanding of connections among graphical, tabular, and algebraic representations of simple linear functions. They enter a simple program that allows them to determine the equations for lines, in the form Y = AX + B, based on tabular and graphical...https://education.ti.com/en/activity/detail/whats-my-line
Get Your Numbers in Shape (TI-83/84 Family)
Students produce a sequence, explore patterns and find a linear or quadratic equation for a given pattern. They use inductive reasoning to make conjectures about patterns. Students also find the Y-value of a function if the X-value is provided, and vice versa.https://education.ti.com/en/activity/detail/get-your-numbers-in-shape-ti8384-family
Proof of Identity
Students use graphs to verify the reciprocal identities. They then use the calculator's manual graph manipulation feature to discover the negative angle, cofunction, and Pythagorean trigonometric identities.https://education.ti.com/en/activity/detail/proof-of-identity
Where’s the Point?
This activity can be used to introduce students to the Cartesian plane. They should have some familiarity with how points are located in the plane using two coordinates, but the emphasis in this activity is solidifying students' understanding of just how that is done. As configured, the activity ...https://education.ti.com/en/activity/detail/wheres-the-point
Population Growth with Calcumites
Students will use mathematical models to represent and understand quantitative relationships.https://education.ti.com/en/activity/detail/population-growth-with-calcumites
How Many Drivers? Investigating the Slope-Intercept Form of a Line
In this activity, students will be introduced to the slope-intercept form of a linear equation. They will recognize the effects of changes in the slope and y-intercept on the graph of a line. Students will use the Transformation Graphing application to find an approximate linear model of the actu...https://education.ti.com/en/activity/detail/how-many-drivers-investigating-the-slopeintercept-form-of-a-line
How Many Solutions?
In this activity, students graph systems of linear functions to determine the number of solutions. In the investigation, students are given one line and challenged to draw a second line that creates a system with a particular number of solutions.https://education.ti.com/en/activity/detail/how-many-solutions_1