Investigating Correlation
This lesson involves investigating the connection between the scatterplot of bivariate data and the numerical value of the correlation coefficient.https://education.ti.com/en/activity/detail/investigating-correlation
Introduction to the Central Limit Theorem
Students discover the Central Limit Theorem by simulating rolls of two, four, and seven number cubes via the random number generator.https://education.ti.com/en/activity/detail/introduction-to-the-central-limit-theorem_1
Interpreting R -squared
This lesson involves predicting values of a particular variable.https://education.ti.com/en/activity/detail/interpreting-r-squared
Graphical Analysis
Students will analyze graphs of polynomials finding intervals over which the function is increasing or decreasing and positive or negative, as well as the function’s relative minimum and maximum values and x- and y-intercepts.https://education.ti.com/en/activity/detail/graphical-analysis
The Area Between
Students will find the area between two curves while determining the required amount of concrete needed for a winding pathway and stepping stones.https://education.ti.com/en/activity/detail/the-area-between_1
Slopes of Secant Lines
Collect data about the slope of a secant line and then predict the value of the slope of the tangent line.https://education.ti.com/en/activity/detail/slopes-of-secant-lines
Graphs of Polynomial Functions
The activity begins by having students compare functions to introduce the concept of end behavior. Then they graph cubics and quartics, noting the respective end behaviors for positive and negative leading coefficients. Finally, they compare quadratics to quartics and cubics to quintics to discov...https://education.ti.com/en/activity/detail/graphs-of-polynomial-functions
Influencing Regression
This lesson involves a least-squares regression line fit to a set of nine values.https://education.ti.com/en/activity/detail/influencing-regression
How Many? (Precalculus)
Students will be presented a situation in which they must use linear programming to determine the optimum production level to maximize profits.https://education.ti.com/en/activity/detail/how-many-precalculus
Is it Rare?
Students use the Poisson distribution to determine the probabilities for various numbers of hurricanes hitting the United States in a given year. Students will also explore the graph of the Poisson distribution and how it behaves.https://education.ti.com/en/activity/detail/is-it-rare_1
Independence Is the Word
Students use a simulation to find the experimental probability of independent events. They will find the sample space and then compare the experimental and theoretical probabilities.https://education.ti.com/en/activity/detail/independence-is-the-word
Slope Fields
Use a visual representation of the family of solutions to a differential equation.https://education.ti.com/en/activity/detail/slope-fields
Simple Harmonic Motion
With an example of the motion of a child on a swing, the activity begins with the trigonometric function between time and displacement and differentiates up to acceleration.https://education.ti.com/en/activity/detail/simple-harmonic-motion_1
One- and Two-Variable Statistics--Review
In this activity, students will review the concepts that they have learned thus far in statistics. The first part of the activity includes one-variable topics such as graphing quantitative variables, calculating measures of central tendency and spread, and making comparisons. The second part incl...https://education.ti.com/en/activity/detail/one-and-twovariable-statisticsreview_1
Hypothesis Testing: Means
Students test a claim about a mean with a large sample size using the test statistic and the critical value. They also find the area under the curve to find the p value. Then, students will see how the result would change if they used a one-percent significance level or smaller sample size. An op...https://education.ti.com/en/activity/detail/hypothesis-testing-means_1
Second Derivative Grapher
Visualize the relationship between the graph of a function and the graph of its second derivative.https://education.ti.com/en/activity/detail/second-derivative-grapher
Secant/Tangent Line Connection
Students will explore a real situation by minimizing the distance between two points on a secant line; ultimately making a connection to the slope of the tangent line and the difference quotient. Students will explore this graphically, numerically, and analytically. An extension at the end allo...https://education.ti.com/en/activity/detail/secanttangent-line-connection
Sign of the Derivative
Make a connection between the sign of the derivative and the increasing or decreasing nature of the graph.https://education.ti.com/en/activity/detail/sign-of-the-derivative
Margin of Error and Sample Size
This activity investigates the margin of error for a confidence interval and the relationship between sample size and the margin of error.https://education.ti.com/en/activity/detail/margin-of-error-and-sample-size
Solids of Revolution
Students will investigate 3D visualizations of volumes created by rotating a function about the x-or y-axis. They will understand the concept and reason for the volume formula in order to be prepared for generalizations. Students will solve the definite integral by hand using the fundamental theo...https://education.ti.com/en/activity/detail/solids-of-revolution
Solids Of Revolution Between Two Curves
Students will investigate 3D visualizations of volumes created by rotating two functions about the x-or y-axis. They will understand the concept and reason for the volume formula in order to be prepared for generalizations. Students will solve the definite integral by hand using the fundamental t...https://education.ti.com/en/activity/detail/solids-of-revolution-between-two-curves
Makin' It Through The Winter
Students simulate a binomial distribution and calculate probabilities for a variety of situations involving binomial probability distributions.https://education.ti.com/en/activity/detail/makin-it-through-the-winter_1
Olympic Gold (Regression Wisdom)
This activity takes a deeper look into the use of linear regressions. It addresses some of the limitations and common mistakes encountered with regressions.https://education.ti.com/en/activity/detail/olympic-gold-regression-wisdom
Taylor Polynomials with CAS
Powerful tool for discussing graphs of Taylor polynomials.https://education.ti.com/en/activity/detail/taylor-polynomials
Percentiles
The goal of this activity is for students to use the area to the left of a value in a normal distribution to find its percentile. The process will then be reversed to find the value for a given percentile.https://education.ti.com/en/activity/detail/percentiles_ib_ns